
Orsay
N◦ d'ordre : 9992

THÈSE

présentée pour obtenir le grade de
Docteur en Sciences de l'Université Paris XI, Orsay

Spécialité : Informatique

−

Stochastic Optimization Problems with

Knapsack Constraint

Stefanie KOSUCH

−
Soutenue le 21 octobre 2010 devant le jury composé de :

Directeur de thèse : Abdel Lisser Professeur

Rapporteurs : Jean-Baptiste Hiriart-Urruty Professeur
Maarten H. van der Vlerk Professeur

Examinateurs : Pierre Carpentier Professeur
Brigitte Rozoy Professeur

Invitée au jury: Laetitia Andrieu Ingénieur Chercheur
EDF R&D (Clamart)

Meinen Eltern.

Acknowledgements - Remerciements - Danksagungen

I want to thank Professor Abdel Lisser for the opportunity to write this Ph.D. thesis
under his supervision, for the motivation he gave me and for all the many things I learned
as well as experiences I gained during the last 3 years.

Special thanks to Professor Hiriart-Urruty and Professor van der Vlerk for having ac-
cepted to review my thesis and for attending my Ph.D. defense via video-conference. It
was a pleasure to meet you virtually! Thanks also to Ms. Andrieu, Professor Carpentier
and Professor Rozoy for being part of my defense jury. It was a pleasure to meet you in
person!

Un grand merci aux membres du LRI en général et à l'équipe GraphComb en partic-
ulier pour votre accueil chaleureux, votre serviabilité, les pauses conviviales et la bonne
humeur qui règne au bâtiment 490. Vous allez me manquer !

Merci Vincent, pour ton support, ton sens de l'écoute, ta patience, ton aide avec la
"vraie" informatique et les corrections de mes textes en français. Bref: Merci pour être
là !

Ein ganz besonderer Dank gilt meinen Eltern und meiner Familie, für die entgegenge-
brachte Liebe, die Freiheit die sie mir immer lieÿen und die vielseitige Unterstützung
bei all meinen bisherigen Entscheidung. Ohne meine Freude an Mathematik und Natur-
wissenschaften (danke Papa!) sowie daran, anderen etwas beibringen zu dürfen (danke
Mama!) wäre ich mit Sicherheit nicht dort, wo ich heute bin. Und das wäre doch schade,
oder?

Résumé en Français

Introduction

Le problème de sac-à-dos consiste à choisir parmi un ensemble d'objets un sous-ensemble
dont le poids total respecte une contrainte (la capacité pondérale du sac-à-dos) et telle
que la valeur totale des objets choisis est maximisée.
Dans le cas du problème de sac-à-dos déterministe, tous les paramètres (poids, valeurs,
capacité) sont connus. Dans cette thèse, nous étudions des variantes stochastiques du
problème. Plus précisément, nous étudions quatre problèmes d'optimisation stochastiques
ayant en commun une contrainte de sac-à-dos dans laquelle les poids sont supposés être
aléatoires. Cet-à-dire, quand la (pré)décision de quels objets choisir doit être prise, les
poids exacts de ces objets sont encore inconnus. Il s'en suit, en général, qu'on ne peut
pas être sûr si les objets choisis vont respecter la capacité du sac-à-dos.
Le premier problème traité est un problème avec recours simple. Ceci veut dire qu'on
suppose qu'en cas de violation de la contrainte de sac-à-dos (i.e. de capacité) une pénalité
par unité de surcharge doit être payée. Nous supposons en plus que les valeurs des objets
dépendent linéairement des poids, et sont donc aléatoires eux-mêmes. Le but est de max-
imiser la di�érence entre l'espérance de la valeur totale des objets choisis et l'espérance de
la pénalité à payer. Ce problème a été étudié pour la première fois par Cohn et Barnhart
dans [CB98]. Comme Cohn et Barnhart, nous faisons l'hypothèse que les poids aléatoires
suivent une distribution normale.
Le deuxième problème étudié est un problème avec contrainte probabiliste. Dans ce mod-
èle on suppose qu'une violation de la contrainte de capacité est admissible et aucune
pénalité ne doit être payée en cas de surcharge. Par contre, la probabilité d'une violation
est restreinte en introduisant une contrainte probabiliste. Comme pour le problème avec
recours simple nous supposons que les poids sont distribués normalement.
Dans le cas du problème de sac-à-dos avec recours, qui est le troisième problème étudié,
une correction de la décision prise peut être e�ectuée une fois que les poids exacts sont
connus. Cette action de recours entraîne naturellement des coûts. Plus précisément, si
nous retirons des objets, une pénalité doit être payée. Et si on en ajoute, la valeur d'un
objet ajouté est strictement plus petite que si on l'avait ajouté au moment où les poids
étaient encore aléatoires.
Nous étudions dans cette thèse deux cas di�érents du problème de sac-à-dos avec recours.
D'un côté nous supposons que les poids sont normalement distribués. Ceci entraîne le
problème qu'il n'est pas évident comment évaluer la fonction objectif. D'un autre côte
nous étudions le cas de poids distribués discrètement. Dans ce cas, le problème a une
reformulation équivalente déterministe qui, en général, est de très grande taille et di�cile

à résoudre exactement. Nous étudions donc l'approximabilité du problème. Le cas de
poids distribués discrètement a été étudié auparavant dans la thèse de Lopez ([Lop10],
voir aussi [GLLH10]) où une relaxation semi-dé�nite est proposée.
Le dernier problème étudié est un problème biniveau avec contrainte de sac-à-dos prob-
abiliste au premier niveau. Nous faisons encore une fois l'hypothèse de poids distribués
discrètement, ce qui permet une reformulation du problème initial en un problème biniveau
déterministe. De tels problèmes ont été étudiés auparavant et il est bien connu comment
les reformuler en problèmes équivalents avec un seul niveau (voir e.g. [AHJS97]).

Problème de sac-à-dos avec recours simple

Nous considérons un problème de sac-à-dos stochastique sous la forme suivante : Etant
donnés n objets dont les poids sont inconnus au moment où la décision du choix des objets
doit être prise. En conséquence, les poids sont modélisés comme variables aléatoires et
nous considérons qu'ils suivent une loi normale. Plus précisément, nous associons à l'objet
i la variable aléatoire distribuée normalement χi avec une moyenne µi et un écart-type
σi. Par χ nous notons le vecteur n-dimensionnel correspondant. La valeur par unité de
poids ri > 0 de l'objet i et la capacité c du sac-à-dos sont supposées être déterministes.
En cas de surcharge, une pénalité par unité de surcharge d doit être payée. L'objectif
est de maximiser l'espérance de la valeur totale des objets choisis moins l'espérance de la
pénalité à payer. Le problème peut être formulé mathématiquement comme suit :

Problème de sac-à-dos avec recours simple (SRKP)

max
x∈{0,1}n

E[
n∑
i=1

riχixi]− d · E[[
n∑
i=1

χixi − c]+]

Ici E[·] note l'espérance mathématique et [x]+ := max(0, x) = x · 1R+(x) (x ∈ R) avec
1R+ étant la fonction indicatrice de l'intervalle réel non-négatif.

Méthode de résolution

Comme framework nous proposons d'utiliser un algorithme branch-and-bound (B&B)
comme celui utilisé dans [CB98]. Pour obtenir des bornes supérieures nous résolvons des
relaxations continues.
Il n'est pas di�cile de démontrer que la relaxation continue du SRKP est concave. Ceci
nous permet de le résoudre en utilisant un algorithme gradient stochastique. Un algo-
rithme gradient stochastique est une combinaison de la méthode de Monte-Carlo et de
la méthode du gradient bien connue en optimisation continue. Au lieu de travailler di-
rectement avec le gradient de la fonction objectif, l'espérance mathématique dans cette
fonction est approximée par des tirages au sort de la variable aléatoire à chaque itéra-
tion. Plus précisément, si la fonction objectif s'écrit J(x, χ) = E[j(x, χ)], nous utilisons à
l'itération k le gradient ∇xj(x, χ

k) où χk est obtenu par un tirage au sort.

Dans le cas du SRKP , nous avons j(x, χ) =
∑

i riχixi−d · [
∑n

i=1 χixi−c]+. j n'étant pas
di�érentiable en tout point, nous approximons son gradient à l'aide d'une approximation
par convolution. L'idée de base de cette méthode est de remplacer la fonction indicatrice
1R+ par son produit de convolution avec une fonction ht(x) := 1

t
h
(
x
t

)
qui approxime la

fonction de Dirac quand le paramètre t tend vers zéro (plus de détails sur cette méthode
se trouvent dans les articles [ENW95] et [ACVA07]). Le produit de convolution de deux
fonctions est dé�ni par :

(ρ ∗ h)(x) :=

∞∫
−∞

ρ(y)h(x− y) dy

Soit h une fonction paire, continue et non-négative telle que
∞∫
−∞

h(x) dx = 1 et qui a

son maximum au point x = 0. Dans ce cas, la fonction suivante peut être vue comme
l'approximation d'une fonction réelle et localement intégrable ρ :

ρt(x) := (ρ ∗ ht)(x) =
1

t

∞∫
−∞

ρ(y)h

(
y − x
t

)
dy

Quand ρ = 1R+ , le gradient de ρt se laisse calculer de la manière suivante (exemple
monodimensionel) :

(ρt)
′(x) =

1

t2

∞∫
0

h′
(
y − x
t

)
dy = −1

t
h

(
−x
t

)
= −1

t
h
(x
t

)

Résultats Numériques

Nous comparons notre approche avec la méthode de résolution de Cohn et Barnhart
([CB98]). Pendant que l'algorithme B&B qu'on utilise est principalement celui de Cohn
et Barnhart, la nouveauté dans notre approche est de résoudre des relaxations pour obtenir
des bornes supérieures et couper des sous-arbres. Les bornes de Cohn et Barnhart, au
contraire, sont des bornes qui se laissent calculer très facilement et dont le calcul prend
beaucoup moins de temps que résoudre une relaxation. Cependant, nos tests numériques
ont montrés que nos bornes sont beaucoup plus serrées. Il en résulte que l'algorithme
B&B prend moins de temps sur des instances de grande taille car un plus grand nombre
de sous-arbres peut être rejeté.

Problème de sac-à-dos avec contrainte probabiliste

En utilisant les dé�nitions données pour le problème avec recours simple, le problème avec
contrainte probabiliste peut être formulé comme suite :

Problème de sac-à-dos avec contrainte probabiliste (CCKP)

max
x∈{0,1}n

E

[
n∑
i=1

riχixi

]

s.t. P{
n∑
i=1

χixi ≤ c)} ≥ p.

où P{A} est la probabilité d'un événement A et p ∈ (0.5, 1]. Le problème peut être refor-
mulé en un problème avec contrainte en espérance (ECKP) dû à l'égalité
suivante :

P{
n∑
i=1

χixi ≤ c} = E

[
1R+ [c−

n∑
i=1

χixi]

]

Méthode de résolution

Comme dans le cas avec recours simple nous proposons de résoudre le CCKP à l'aide d'un
algorithme B&B . Des bornes supérieures sont encore une fois obtenues en appliquant un
algorithme de type gradient stochastique pour la résolution des relaxations continues. Plus
précisément, nous appliquons un algorithme Arrow-Hurwicz stochastique. L'algorithme
introduit un multiplicateur de Lagrange et résout le problème dual lagrangien de l'ECKP
avec un algorithme sous-gradient stochastique.
Le problème qui se pose concerne la fonction indicatrice (à l'intérieur de l'espérance de
la contrainte) dont l'unique sous-gradient est zéro presque partout. Nous résolvons ce
problème de deux manières di�érentes :
La première méthode consiste à approximer le gradient de la fonction indicatrice par des
di�érences �nies ce qui nous donne comme hième composante du gradient approché :

1R+(c− g(x+ δνh, χ))− 1R+(c− g(x− δνh, χ))

2δ

où g(x, χ) :=
∑n

i=1 χixi, δ > 0 et νh ∈ {0, 1}n tel que νhh = 1 et νhi = 0 quand i 6= h.
L'idée de la deuxième méthode est de remplacer la fonction θ(x, χ) = 1R+ [c−

∑n
i=1 χixi]

dans l'espérance de la contrainte par une fonction θ̃ tel que E[θ̃(x, χ)] = E[θ(x, χ)]. θ̃

est sous-di�érentiable en tout point et l'idée est d'utiliser un sous-gradient de θ̃ dans
l'algorithme sous-gradient stochastique au lieu de celui de θ. La reformulation de E[θ(x, χ)]
est obtenue à l'aide de l'intégration par parties.

Etude de la convergence de l'algorithme Arrow-Hurwicz
stochastique

Culioli et Cohen ont démontré un théorème qui propose un ensemble de conditions garan-
tissant la faible convergence de l'algorithme Arrow-Hurwicz stochastique. Dans notre cas,

certaines de ces conditions ne sont pas satisfaites, notamment la stricte concavité de la
fonction objectif et la concavité de la fonction de contrainte. Alors que nous pensons que la
première hypothèse peut être négligée dans le cas d'une fonction de contrainte strictement
concave, la deuxième hypothèse est clairement nécessaire pour assurer la convergence de
l'algorithme. Cependant, avec un bon choix de la grandeur des pas, une convergence peut
être obtenue pratiquement, surtout pour des grandes valeurs de p.
Toutefois, quand on utilisait la méthode basée sur l'intégration par parties pour obtenir un
sous-gradient, l'algorithme ne convergeait pas sur les premières instances testées. Après
une étude plus approfondie du problème et du fonctionnement de l'algorithme, nous avons
réussi à faire converger l'algorithme : d'un côte avec une simple reformulation équivalente
de la contrainte probabiliste, et de l'autre côté avec un choix plus prudent de la variable
avec laquelle l'intégration par parties est exécutée.

Problème de sac-à-dos avec recours

Dans le cas du sac-à-dos avec recours on considère que, pendant que les poids sont encore
inconnus, quelques objets peuvent être choisis à une valeur (par unité de poids) de ri pour
objet i (i = 1, . . . , n) (première étape). Une fois les poids connus, la décision peut être
corrigée (deuxième étape) : Des objets supplémentaires peuvent être ajoutés à une valeur
(par unité de poids) de r̃i < ri et/ou on peut retirer des objets si la capacité n'est pas
respectée, ce qui entraîne une pénalité (par unité de poids) de di > ri. La correction doit
être e�ectuée de façon que, après la deuxième étape, le poids total des objets (restants)
dans le sac-à-dos respecte la capacité.
Dans cette thèse nous étudions deux variantes du problème de sac-à-dos avec recours :
dans la première, les poids sont supposés être distribués normalement, et dans la deuxième
nous faisons l'hypothèse qu'il n'existe qu'un nombre �ni de scénarios pour la réalisation
des poids.

Problème de sac-à-dos avec recours et poids normalement
distribué

Dans le premier modèle avec recours étudié nous supposons que les poids sont normale-
ment distribués, que les valeurs et pénalités dépendent linéairement des poids, qu'il faut
respecter une contrainte probabiliste à la première étape et qu'un échange d'objets n'est
pas permis à la deuxième étape (i.e. on peut retirer des objets que dans le cas d'une
surcharge et ajouter des objets que si la di�érence entre le poids total des objets choisis
à la première étape et la capacité le permet). Les vecteurs de décisions correspondants
de la deuxième étape sont dénommés y+ (pour les objets ajoutés) et y− (pour les objets

retirés). Le problème étudié peut être décrit comme suit :

(TSKP) max
x∈{0,1}n

E

[
n∑
i=1

riχixi

]
+ E [Q(x, χ)]

s.t. P{
n∑
i=1

χixi ≤ c} ≥ p.

Q(x, χ) = max
y+,y−∈{0,1}n

n∑
i=1

riχiy
+
i − d

n∑
i=1

χiy
−
i

s.t. y+
k ≤ 1− xk ∀ k = 1, . . . , n,

y−k ≤ xk ∀ k = 1, . . . , n,

y+
k ≤ 1R+(c−

n∑
i=1

χixi) · y+
k ∀ k = 1, . . . , n,

y−k ≤ 1R+(
n∑
i=1

χixi − c) · y−k ∀ k = 1, . . . , n,

n∑
i=1

(xi + y+
i − y−i)χi ≤ c.

Bornes supérieures

Nous proposons de calculer des bornes supérieures sur la valeur optimale du TSKP en
résolvant une relaxation continue du problème : D'abord nous uni�ons les valeurs par
unité de poids de la deuxième étape en supposant que pour tous les objets nous recevons
une récompense de rmax = max{ri|i ∈ {1, . . . , n}} par unité de poids. Il s'en suit pour
le cas continu qu'à la deuxième étape nous remplissons le sac-à-dos jusqu'à sa capacité
dans le cas d'une sous-charge avec une valeur par unité de poids de rmax, et nous retirons
exactement la surcharge dans le cas contraire, en payant une pénalité par surcharge de d.
Une borne supérieure peut donc être obtenue en résolvant le problème avec recours simple
et contrainte probabiliste suivant en appliquant une combinaison des méthodes proposées
auparavant :

max
x∈{0,1}n\{On}

E

[
n∑
i=1

rixiχi

]
+ rmax · E

[
[c−

n∑
i=1

xiχi]
+

]
− d · E

[
[
n∑
i=1

xiχi − c]+
]

s.t. P{
n∑
i=1

xiχi ≤ c} ≥ p.

Bornes inférieures

Une des plus grandes di�cultés concernant le TSKP est d'évaluer la fonction objectif
étant donné une décision de la première étape. Pour remplacer cette évaluation exacte

nous proposons des bornes inférieures sur la valeur de la fonction objectif à un point x
donné. Ces bornes sont basées sur une estimation de la valeur des objets ajouté à la
deuxième étape, indépendante des vecteurs de décision y+ et y−. Plus précisément, nous
estimons la capacité qui sera (encore) non-utilisée après que la décision de la deuxième
étape a été prise. Nous nous intéressons en particulier au cas d'objets similaires, i.e. au
cas où la probabilité pour qu'un objet ait le double du poids d'un deuxième objet est
(quasi) nulle. La meilleure borne parmi ces bornes inférieures est ensuite déterminée avec
un algorithme B&B qui parcourt l'ensemble des solutions admissibles à la première étape.

Résultats numériques

Nos tests numériques ont montré que, si on ne permet que l'ajout d'objets à la deuxième
étape, les bornes inférieures proposées particulièrement pour le cas de poids similaires sont
de la même qualité que les bornes inférieures proposées pour le cas général (quand ap-
pliquées à une instance d'objets similaires). Par contre, dès qu'on admet le rejet d'objets,
les bornes particulaires se montrent beaucoup plus serrées que les bornes générales. Pour
des instances de grande taille (500-2000 objets) les bornes proposées pour le cas d'objets
similaires sont même presque optimales et peuvent, dans un algorithme B&B , être déter-
minées en moins de 30 minutes.

Problème de sac-à-dos avec recours et poids normalement
distribué

Dans la deuxième variante du problème de sac-à-dos avec recours, nous supposons qu'il
n'y a qu'un nombre �ni de réalisations du vecteur du poids χ1, . . . , χK avec probabilités
non-nulles correspondantes p1, . . . , pK . Dans un premier temps, nous étudions le cas de
valeurs ri, r̃i et de pénalités di déterministe. Un échange d'objets à la deuxième étape est
possible. En introduisant K copies des vecteurs de décision de la deuxième étape et en
traitant les contraintes de la deuxième étape pour chacun des K scénarios séparément,
on obtient la reformulation déterministe suivante :

(TSKD) max
n∑
i=1

rixi +
K∑
k=1

pk

(
n∑
i=1

ri(y
+)ki −

n∑
i=1

di(y
−)ki

)
s.t. (y+)ki ≤ 1− xi, ∀ i = 1, . . . , n, ∀ k = 1, . . . , K,

(y−)ki ≤ xi, ∀ i = 1, . . . , n, ∀ k = 1, . . . , K,
n∑
i=1

(xi + (y+)ki − (y−)ki)χ
k
i ≤ c, ∀ k = 1, . . . , K,

x ∈ {0, 1}n,
(y+)k, (y−)k ∈ {0, 1}n ∀ k = 1, . . . , K.

Résultats de non-approximabilité

Nous montrons dans cette thèse que la variante du TSKD où des objets peuvent seule-
ment être ajoutés à la deuxième étape (AddTSKD) est équivalent au problème de sac-à-
dos avec plusieurs contraintes MCKP (aussi appelé problème de sac-à-dos multidimen-
sionnel). Plus particulièrement, chaque instance de l'AddTSKD peut être vue comme
une instance du MCKP et une instance du MCKP peut être résolue à l'intermédiaire
d'une instance de l'AddTSKD. Comme ces réductions sont polynomiales, tous les ré-
sultats d'approximation et de non-approximation du MCKP peuvent être appliqués au
AddTSKD. Le MCKP étant connu de ne pas admettre d'algorithme d'approximation
avec une garantie de performance égale à une valeur constante (si P 6= NP) (voir
[LY99]), le AddTSKD n'admet pas de tel algorithme non plus. Comme une instance
de l'AddTSKD peut être reformulée de façon équivalente en un TSKD, ce dernier ne
peut probablement pas être approximé avec un ratio constant.
Nous étendons ce résultat à trois autres cas particuliers : le cas où des objets peuvent
seulement être retirés à la deuxième étape, le cas où les valeurs et pénalités dépendent
linéairement des poids et le cas où les valeurs et pénalités de la deuxième étape sont une
fraction resp. un multiple �xe de la valeur correspondante de la première étape.

Problème biniveau stochastique avec contrainte de

sac-à-dos

Les modèles de biniveau servent à modéliser des problèmes d'optimisation où deux parties
doivent prendre une décision dont l'une dépend de l'autre. Plus précisément, la deuxième
partie fait sa décision suivant la décision de la première partie qui, elle, doit assurer que
le problème de la deuxième partie est réalisable. Le problème de la deuxième partie
(problème du niveau bas) fait donc partie des contraintes du problème de la première
partie (problème du niveau haut). Nous étudions le cas où la première partie est en plus
soumise à une contrainte de sac-à-dos probabiliste. Poids et capacité sont supposés être
dépendants d'un vecteur aléatoire distribué discrètement χ. La formulation mathématique
du problème traité est la suivante :

(SLBP) max
x

ct1x+ dt1y

s.t. A1x+B1y ≤ b1,

P{wt(χ)x ≤ s(χ)} ≥ (1− α),

Onx ≤ x ≤ 1nx ,
y ∈ arg max

y
ct2x+ dt2y,

s.t. A2x+B2y ≤ b2,

y ≥ 0.

où c1, c2,∈ Rnx , d1, d2 ∈ Rny , A1 ∈ Rm1×nx , B1 ∈ Rm1×ny , b1 ∈ Rm1 , A2 ∈ Rm2×nx ,
B2 ∈ Rm2×ny , b2 ∈ Rm2 et 0 < α ≤ 1.

Reformulation équivalente en problème bilinéaire déterministe

Due à l'hypothèse d'une distribution discrète, la contrainte probabiliste peut être rem-
placée par un ensemble de contraintes linéaires déterministes. Ceci demande, par contre,
l'introduction de K variables binaires au niveau haut. Dans [AHJS97] les auteurs mon-
trent comment reformuler le problème biniveau obtenu en un problème bilinéaire avec
variables continues. L'idée de base est d'ajouter les contraintes primales et duales ainsi
que les contraintes de complémentarité du problème du niveau bas aux contraintes du
niveau haut. Cependant, les contraintes de complémentarité rendent le problème obtenu
di�cile à résoudre exactement.

Relaxation et algorithme itératif

Au lieu de résoudre le problème bilinéaire obtenu exactement, nous proposons de relaxer
les contraintes de complémentarité dans la fonction objectif. La relaxation obtenue est la
suivante :

(LGN) min
λ,µ1,µ2

max
x,y,z

L(x, y, z, λ, µ1, µ2)

s.t. A1x+B1y ≤ b1,

wtkx ≤ sk +Mkzk ∀ k = 1, . . . , K,

ptz ≤ α,

A2x+B2y ≤ b2,

(B2)tλ ≥ d2,

IKµ1 + IKµ2 ≥ 1K ,
Onx ≤ x ≤ 1nx ,OK ≤ z ≤ 1K ,
y, λ, µ1, µ2 ≥ 0.

où L(x, y, z, λ, µ1, µ2) = ct1x+ dt1y+ λt(b2−A2x−B2y) +µt1z+µt2(1K − z) + yt((B2)tλ−
d2). Quand on �xe les variables primales ou les variables duales on obtient un problème
linéaire. En plus, les contraintes sont séparables. Nous proposons donc un algorithme qui
résout itérativement le sous-problème primal et le sous-problème dual. En ajoutant une
coupe à chaque sous-problème dans chaque itération, la convergence vers l'optimum de la
relaxation LGN est assurée.

Résultats numériques et bornes améliorées

Les résultats numériques ont con�rmés la bonne convergence de notre algorithme itératif,
i.e. après quelques itérations la solution du sous-problème primal et la solution du sous-

problème dual se rapprochent à une petite di�érence (relative) près. En plus, la relaxation
a pu être résolue pour K = 100 et nx = ny = 1000 en 20 minutes en moyenne.
Par contre, nous avons remarqué sur quelques instances dont nous connaissions la valeur
optimale que cette dernière était plutôt loin de la solution de la relaxation. Nous proposons
donc une deuxième relaxation et démontrons que celle-ci donne des meilleures bornes.
Une sélection d'algorithmes de la littérature pour résoudre cette deuxième relaxation est
présentée.

Perspectives

Pour tous les problèmes étudiés nous avons supposé que les poids suivent une distribution
particulière, soit normale, soit discrète. Il serait donc intéressant et important de savoir,
si nos méthodes proposées restent applicables si on suppose une autre distribution où si
on ne �xe pas de distribution du tout. Par exemple, l'algorithme gradient stochastique
utilisé pour résoudre les relaxations des problèmes de sac-à-dos avec recours simple et avec
contrainte probabiliste ne demande théoriquement pas d'informations sur la distribution
des variables aléatoires.
En ce qui concerne le problème de sac-à-dos avec recours et poids normalement distribués,
les bornes inférieures proposées pour le cas général sont encore plutôt mauvaises. Une
amélioration de ces bornes sera donc envisageable.
Nous avons montré que le problème de sac-à-dos avec recours et poids discrètement dis-
tribués n'admet très probablement pas d'algorithme d'approximation avec une garantie
de performance constante. Cependant, il pourrait exister un algorithme d'approximation
dont la garantie de performance augmente avec le nombre d'objets ou le nombre de scé-
narios, puis il reste à étudier si le problème admet un PTAS ("Polynomial Time Approx-
imation Scheme") si le nombre de scénarios est �xé.
Pour le problème stochastique biniveau avec contrainte probabiliste nous n'avons, dans
cette thèse, proposé qu'un algorithme pour résoudre une relaxation. Il reste évidemment
à étudier comment résoudre le problème initial exactement de manière e�cace.
Un type de modèle qui n'a pas été étudié dans cette thèse est le modèle avec plusieurs
étapes. Une extension des bornes proposées pour le cas avec deux étapes pourrait être
possible.

Contents

Contents 1

1 Introduction 5

1.1 Remark on the structure and contents of this thesis 9
1.2 Summaries of the main chapters . 11
1.3 Preliminaries . 14

2 The Simple Recourse Knapsack Problem 17

2.1 Introduction . 17
2.1.1 Simple Recourse Problems . 17
2.1.2 The Simple Recourse Knapsack Problem (SRKP) 19
2.1.3 Solving Simple Recourse Problems with continuous recourse 20
2.1.4 Solving Simple Recourse Knapsack Problems 23

2.2 Mathematical formulation . 24
2.2.1 Properties of the SRKP . 25

2.3 Problem Solving Method . 26
2.3.1 The Stochastic Gradient Algorithm and Approximation by Convo-

lution Method . 27
2.3.2 The Branch-and-Bound Algorithm 29

2.4 Numerical results . 30
2.4.1 The continuous SRKP . 31
2.4.2 The combinatorial SRKP . 32

2.5 Concluding remarks and future work . 33

3 The Chance-Constrained Knapsack Problem 37

3.1 Introduction . 37
3.1.1 Chance-Constrained Problems . 37
3.1.2 Chance-Constrained Knapsack Problems (CCKP) 42
3.1.3 Solving Chance-Constrained Problems 43
3.1.4 Solving Chance-Constrained Knapsack Problems 46

3.2 Mathematical formulation . 47
3.2.1 Properties of the CCKP . 48

3.3 Problem Solving Method . 49
3.3.1 The Stochastic Arrow-Hurwicz (SAH) Algorithm 49
3.3.2 The Branch-and-Bound Framework 53

1

CONTENTS

3.4 Convergence of the SAH Algorithm . 53
3.4.1 Theoretical versus practical convergence 53
3.4.2 Numerical convergence tests . 58

3.5 Solving the (combinatorial) CCKP - Numerical Results 63
3.6 Concluding remarks and future work . 64

4 The Two-Stage Knapsack Problem with Full Recourse 69

4.1 Introduction . 69
4.1.1 Two-Stage Problems . 69
4.1.2 The Two-Stage Knapsack Problems with full recourse 71
4.1.3 Solving Two-Stage Problems . 73
4.1.4 Approximation Algorithms for Two-Stage Problems 77
4.1.5 Solving Two-Stage Knapsack Problems 82

4.2 The Two-Stage Knapsack Problem with normal weight distributions (TSKP) 82
4.2.1 Mathematical formulation and properties 82
4.2.2 Computing upper bounds on the optimal solution value of the TSKP 85
4.2.3 Computing lower bounds on the optimal solution value of the TSKP 86
4.2.4 Branch-and-Bound Algorithm . 95
4.2.5 Numerical results . 95

4.3 The Two-Stage Knapsack Problem with discrete weight distributions (TSKD)103
4.3.1 Mathematical formulation and properties 103
4.3.2 Equivalence of the AddTSKD and the MCKP 106
4.3.3 Non-approximability results for the TSKD and some special cases . 107
4.3.4 Final Remark . 113

4.4 Concluding remarks and future work . 113

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint 117

5.1 Introduction . 117
5.1.1 Bilevel Problems . 117
5.1.2 Stochastic Bilevel Problems and Bilevel Problems with Knapsack

Constraint . 119
5.1.3 Solving Bilevel Problems . 120
5.1.4 Solving Stochastic Bilevel Problems 121

5.2 Mathematical formulation and an illustrative example 123
5.3 From the SLBP to the (Deterministic Equivalent) Linear Bilevel Problem

(LBP) . 124
5.4 From the LBP to the Global Linear Complementarity Problem (GLCP) . 126
5.5 Calculating upper bounds . 128

5.5.1 Proving upper and lower bounds 130
5.5.2 Stopping criteria . 131
5.5.3 Convergence of the algorithm . 132

5.6 Modi�ed iterative minmax scheme . 133

2

CONTENTS

5.7 Numerical experiments . 134
5.7.1 Data Generation . 134
5.7.2 Numerical Results . 135

5.8 Improved bounds . 136
5.8.1 Methods to solve Bilinear Optimization Problems with separable,

linear constraints . 139
5.9 Concluding remarks and future work . 141

6 Conclusion 145

6.1 Future Work . 147

List of Figures 151

List of Tables 153

Bibliography 155

3

1 Introduction

Stochastic optimization problems belong to the more wider class of Optimization Prob-
lems under Uncertainty. Optimization under Uncertainty arises wherever a decision has
to be made that is optimal with respect to some objective, while some of the involved
parameters are not exactly known or the decision depends on some future event.
Although it often seems that Optimization under Uncertainty is a much younger �eld of
research than mathematical programming in general, it has been nearly equally long stud-
ied. The paper that is generally accepted to be the �rst reference on Optimization under
Uncertainty was that of Dantzig from 1955 on "Linear programming under uncertainty"
([Dan55]). However, Optimization under Uncertainty has been much less intensively stud-
ied than its deterministic equivalent. There are several possible reasons.
First of all it is natural that one �rst tries to understand and solve the easier, deterministic
variant of a problem before studying its stochastic extensions. Moreover, many problems
that contain uncertain parameters can be equivalently reformulated as a deterministic
problem (at least approximately). As a consequence, a great percentage of problem solv-
ing methods for optimization problems that involve uncertainties are based on algorithms
from deterministic optimization.
Apart from this logical reasoning, the di�culties that are caused by the introduction
of randomness are clearly another important factor why so much less research has been
conducted on Optimization Problems under Uncertainty. These di�culties concern on
the one hand the problem itself that is often much harder to solve than its deterministic
counterpart. On the other hand, one has to judge which or how much information on the
random parameters can be assumed to be known to the decision maker.

Regarding the pursued objective, Optimization Problems under Uncertainty can be di-
vided in three classes: Robust Optimization problems, Online Optimization problems and
Stochastic Optimization problems. However, this classi�cation is not distinct as there nat-
urally exist problems that lie in more than one class.

As the class name indicates, the objective of Robust Optimization problems is to
�nd solutions that behave robustly in all possible scenarios (i.e. for all possible outcomes
of the random parameters). In most cases, this means that one searches for a solution that
is not too bad even in the worst case. More precisely, if we are in the case of a minimiza-
tion problem, the objective is to minimize the maximum objective function value over all
possible scenarios. Another common approach is to minimize the maximum regret. This
means that one aims to minimize the maximum di�erence, over all scenarios, between
optimal solution value and the solution value provided by the robust solution.

5

1 Introduction

A drawback of robust approaches might be that one generally has to assume the random
parameters to be bounded. This is naturally the case if the random variables only admit
a �nite number of outcomes. More commonly, it is assumed that the random variables
are uniformly distributed over a certain interval.
We refer those readers that are interested in an introduction to robust optimization and
robust measures to the very well written "comprehensive survey" by Beyer and Sendho�
[BS07] that has been published very recently. The authors also provide an overview over
solution and approximation techniques for robust optimization problems that have been
previously proposed in the literature, without going into details.

Online Optimization problems arise when information about the random parame-
ters arrives over time and dynamic decisions can or have to be taken based on these
informations. In general, the decision maker only makes a "partial decision" based on the
information he received. Moreover, once a decision has been made, it cannot be corrected
later. The solution of an online optimization problem is therefore a policy that, depending
on the last information revealed, provides the optimal decision to be taken with respect
to an overall objective. As an example, consider a packing problem where the dimensions
of the items to pack are random, but come to be known over time. Whenever the actual
dimension of an item is revealed, the decision maker has to decide instantly if he accepts
the item or not. Another example arises in machine scheduling where the exact length
of a task is not known before the task is completed. At this moment, the decision maker
has to decide which task to schedule next. A possible solution to this online problem is
the policy to always execute the task with the longest expected completion time.
More information about online algorithms and online optimization can be found in the
book by Fiat and Woeginger [Fe98] and the more recent survey by Albers [Alb03]. Online
algorithms for discrete structures are the subject of a short paper by Winter and Zim-
mermann [WZ98] and Combinatorial Online problems have been addressed in [ARGK98]
(and subsequent papers). Those who are interested in the more recent �eld of studies of
Online Stochastic Combinatorial Optimization are referred to the book by Van Henten-
ryck and Bent [HB06].

In Stochastic Optimization Models the objective is mostly to minimize or maxi-
mize an expected value or a probability.
Contrary to robust models, the worst case (or the maximum regret) generally does not
have any importance for the decision maker. However, the solution should either be ac-
ceptable on average and/or the probability that bad cases arise should be small enough.
The main di�erence with online approaches is that, even if we might allow the decision
progress to take place in several stages, the solution of a stochastic optimization problem
is not a policy but the exact decision for each of these stages.
Stochastic Optimization problems where random parameters appear in one or several con-
straints can be best categorized based on the manner that these constraints are handled:
Either it is acceptable that the chosen solution might be infeasible for one or more of the
possible outcomes of the random variables, or it is not.

6

In the �rst case one generally speaks of the risk that one of the constraints might not be
satis�ed. This risk is then either bounded using a chance-constraint (see chapter 3 for
more information on chance-constraints and chance-constrained problems), or the aim is
to minimize the risk with respect to a certain threshold that has been �xed for the gain
(risk aversion, minimum-risk problem; see e.g. [Dra72]). Another approach is to intro-
duce "soft" constraints that can be adapted accordingly if they are not satis�ed by the
chosen solution. This adaptation comes naturally with a cost. Simple recourse problems
are examples for this problem type (a survey on Simple recourse problems can be found
in the introduction of chapter 2).
In the second case, there are two possibilities: Either we request that the solution satis-
�es the constraints for all outcomes of the random parameters. This approach generally
entails very conservative solutions as we might force the solution to even satisfy the con-
straints in very improbable cases. The alternative is to allow later corrections of the
solution. For example, we might assume that a corrective decision can be made once all
the random parameters have come to be known (two-stage problem with full recourse)
(for more information on two-stage problems with full recourse see the introduction of
chapter 4). Alternatively, decisions might take place in several stages based on partial
information (multi-stage problems). Note that, contrary to online models, multi-stage
models require in general the knowledge of which parameter comes to be known at what
moment. For an introduction to the structure and theory of multi-stage problems we refer
the interested reader to the book on Stochastic Programming by Kall and Mayer [KM05]
and the recently published lectures by Shapiro et al. [SDR09].

In this thesis, we will study three types of stochastic models: the simple recourse model,
chance-constrained models as well as the two-stage model. All studied problems have in
common that they involve a so called knapsack constraint. A knapsack constraint is a
one-dimensional constraint that describes the relation between a limited resource and a
set of demands. The expression "knapsack constraint" has its origin in the example of a
traveler whose knapsack has a limited volume or a restricted weight capacity. The traveler
thus has to choose a maximal useful set of items that respects the knapsack capacity. In
this work we study the case where the item weights (or the demands) are assumed to be
random, i.e. unknown at the moment the decision of which items to pack (or which de-
mands to ful�ll) has to be made. This entails the problem that in some cases one cannot
be sure if the chosen items will, in the end, respect the knapsack capacity (or resource
restriction). As aforementioned, the decision of how to handle this inconvenience dictates
the model that has to be chosen to mathematically represent and �nally solve the problem.

When modeling a problem with uncertain parameters mathematically, a second ques-
tion that has to be answered is "How much do we (assume to) know about the random
parameters?". The answer to this question depends, on the one hand, naturally on the
respective problem. On the other hand, one also has to take into account the di�culty to
solve the resulting problem. As often in mathematical modeling, the aim is thus to �nd
a good tradeo� between accuracy and tractability of the model.

7

1 Introduction

When making a so called black-box assumption, one presumes that it is possible to draw
an arbitrary large sample of the random parameters that can be used for (resp. during)
the solution process. Such a black-box (or simply an available set of observations of the
random parameters) might also be used to statistically determine characteristics of the
underlying distribution like for example mean and variance. In some few cases the given
data might even be su�cient to allow for a total description of the distribution. It is
however clear that any such approach only provides us with an approximation of the un-
derlying distribution. Further approximating the distribution for example by assuming a
limited number of discrete scenarios might thus in many cases not be much more restric-
tive.
In this thesis, we mainly study two cases: On the one hand, we make for some of the stud-
ied models the assumption that the underlying distribution is Gaussian and that we have
statistical information about mean and standard deviation for each random parameter.
On the other hand, we study for two problems the case where the underlying distribution
can be represented by a �nite number of realizations or samples.

In the next two sections of this introduction we will give a description of the structure of
the thesis as well as short summaries of the main chapters. The introduction closes with
a table of used notations and other preliminary de�nitions.

8

1.1 Remark on the structure and contents of this thesis

1.1 Remark on the structure and contents of this

thesis

In the following we will present the work that we have conducted during the last 3 years.
Four di�erent types of stochastic optimization problems have been studied, namely Simple
Recourse, Chance-Constrained, Two-Stage and Stochastic Bilevel problems. The struc-
ture of this thesis is based on these four problem types, i.e. we dedicate one chapter to
each of the mentioned approaches.
The following four chapters all start with an introduction where we give further details and
references concerning the stochastic optimization problem treated in the chapter and/or
its deterministic counterpart. First, we present a general formulation of the underlying
problem type and discuss some structural properties. Then we introduce the particular
problem studied.
The second part of the introduction concerns on the one hand former solution methods
for the respective general (stochastic or deterministic) optimization problem as well as
the special problem treated (if applicable). On the other hand, we outline the solution
approach that we propose for the particular problem studied.
The introduction is followed by a section where we present the treated problem and state
its mathematical formulation. Properties of the problem are discussed and analyzed.
In the remaining subsections the proposed solution approach is explained in detail, fol-
lowed by numerical test results and their analysis.
Each of the four following chapters is closed by a conclusion which summarizes the ob-
tained results, discusses possible extensions and gives a prospect of future work.
Remark that chapter 4 has a slightly di�erent structure as two variants of the Two-Stage
Knapsack problem are treated. While the �rst part of the chapter has the abovemen-
tioned structure, the second part is organized di�erently as we do not propose a solution
approach, but prove some non-approximability results.

In the whole thesis we mainly restrict our study to linear stochastic optimization prob-
lems. More precisely, we only consider problems where the "core functions" are linear. By
core functions we mean the functions inside of possible expectations, probability measures
or indicator functions. This implies however in only few cases the (piecewise) linearity of
the problem itself. The introductions and literature reviews therefore mainly focus on the
linear case. Moreover, to simplify notations we will not always precise that the mentioned
problem is linear or that we concentrate our study or analysis on the linear variant of the
problem.
Similarly, we assume for all parameters that depend on a random variable that this de-
pendency is linear. More precisely, for a random parameter a(χ) that depends on the
n-dimensional random vector χ = (χ1, . . . , χn) we assume that there exist deterministic
coe�cients a0, . . . , an such that

a(χ) = a0 +
n∑
i=1

aiχi

9

1 Introduction

Concerning the literature reviews, we restrict ourselves to theoretical and algorithmic re-
sults. Applications only play a marginal role in this thesis, mainly to illustrate some of
the chosen models.

10

1.2 Summaries of the main chapters

1.2 Summaries of the main chapters

Chapter 2: The Simple Recourse Knapsack Problem

In chapter 2 the Simple Recourse Knapsack problem with random weights is studied and
solved. The decision of which items to put in the knapsack has to be made while the exact
weights of the items are still unknown. In case the chosen items lead to an overload, a
penalty per overweight unit has to be paid. The objective is to maximize the expected
total bene�t, i.e. the expected reward minus the expected penalty cost. In this chapter
the item weights are assumed to be independently normally distributed.
Special interest is given to the corresponding continuous problem. We propose to solve
this relaxation using a stochastic gradient algorithm. An Approximation by Convolution
method is applied to approximate the needed gradient of a nondi�erentiable function. A
branch-and-bound framework is chosen in order to solve the initial combinatorial problem.
Numerical results on a dataset from the literature as well as a set of randomly generated
instances are presented and analyzed.

The methods proposed and results obtained in this chapter have been published in An-
nals of Operations Research ([KL10c]). They have also been presented at the interna-
tional conference on Modelling, Computation and Optimization in Information Systems
and Management Sciences in Metz (France) in September 2008.

Chapter 3: The Chance-Constrained Knapsack Problem

In chapter 3 we treat the Stochastic Knapsack problem with Chance-Constraint. Once
more the weights of the items are assumed to be independently normally distributed. The
introduced chance-constraint restricts the percentage of cases where the chosen items lead
to an overload.
As in the previous chapter, the relaxed version of the problem is solved using a stochastic
gradient algorithm in order to provide upper bounds in a branch-and-bound framework.
To solve the relaxation, the chance-constraint is equivalently reformulated as an expecta-
tion constraint and included in the objective by introducing a Lagrange multiplier. Two
approaches to estimate the needed subgradient of the Lagrangian dual function are ap-
plied, one based on integration by parts and one using �nite di�erences. A theoretical
analysis of the convergence properties of the applied stochastic gradient algorithm is given.
As we encountered severe convergence issues during the �rst numerical tests, we investi-
gated in a closer study of the problem and the used approach. It is shown in this chapter,
that a better convergence of the algorithm can be obtained by a simple reformulation of
the problem as well as a more careful implementation of the integration by parts method.

Part of the work presented in this chapter has been conducted in cooperation with Marc
Letournel. A publication with authors S. K., Marc Letournel and Abdel Lisser is close
to submission. The work has been presented at the 9th Cologne-Twente Workshop on
Graphs and Combinatorial Optimization in Cologne (Germany) in May 2010 and an ex-
tended abstract can be found in the proceedings of the workshop ([KLL10]).

11

1 Introduction

Chapter 4: The Two-Stage Knapsack Problem with full recourse

In the �rst part of chapter 4 another particular version of the stochastic knapsack problem
with normally distributed weights is studied: the Two-Stage Knapsack problem. Contrary
to the stochastic single-stage knapsack problems presented in chapters 2 and 3, a correc-
tive decision can be made at the moment the actual item weights come to be known.
More precisely, items can be removed from or added to the knapsack in case the capacity
constraint is not satis�ed or in order to increase the total gain. A chance-constraint is
introduced in the �rst stage in order to restrict the percentage of cases where the chosen
items lead to an overload in the second stage.
Instead of solving the problem exactly, we propose methods to calculate upper and lower
bounds on the optimal solution value. The upper bounds are obtained by solving a
continuous relaxation of the problem. It is shown, that this relaxation is in fact a Simple-
Recourse Knapsack problem with chance-constraint and methods from the previous two
chapters can be applied to solve the problem. The easily computable lower bounds are
designed to replace the evaluation of the objective function in the chosen branch-and-
bound framework as, to the best of our knowledge, there is no practical method known
to exactly compute the objective function value for a given �rst-stage solution. Special
interest is given to the case of similar items. Numerical tests have shown that in this
particular case our lower bounds are close to the exact solution value. As a consequence,
the initial problem can be solved to near optimality for up to 2000 items in about 30
minutes.

The work presented in the �rst part of chapter 4 has been partially presented at the 8th
Cologne-Twente Workshop on Graphs and Combinatorial Optimization in Paris (France)
in June 2009. An extended abstract is published in the workshop proceedings ([KL09]).
The full article has been accepted for publication in the Special Issue of Discrete Applied
Mathematics dedicated to the workshop ([KL10a]). The article is in press but can already
be accessed on-line.

In the second part of chapter 4 we study the Two-Stage Knapsack problem with dis-
cretely distributed item weights. We prove that the problem does not admit a constant-
factor approximation algorithm, unless P = NP . This is done by a reduction from the
multiply-constrained knapsack problem. Furthermore some special cases of the Two-Stage
Knapsack problem are studied that seem to be less di�cult than the general case. We
however show that the optimal solution values of these problems cannot be approximated
to a constant factor in polynomial time, either. To the best of our knowledge, this is the
�rst study of Two-Stage Knapsack problems under the aspect of approximability.

Chapter 5: The Stochastic Bilevel Problem with Knapsack Chance-Constraint

In chapter 5 a mixed integer bilevel problem having a knapsack chance-constraint in
the upper level is proposed. The problem formulation is mainly motivated by practical
pricing and service provision problems as it can be interpreted as a model for the inter-

12

1.2 Summaries of the main chapters

action between a service provider and clients. The probability space is assumed to be
�nite which allows to transform the problem into a deterministic equivalent mixed integer
bilevel problem. Via a reformulation as a linear bilevel problem, a quadratic optimization
problem, the so called Global Linear Complementarity problem, is obtained. Based on
this quadratic (or, more precisely, bilinear) problem, we propose a procedure to compute
upper bounds for the initial problem by solving a Lagrangian relaxation using an iterative
linear minmax scheme. We prove our scheme to converge to an optimal solution of the
relaxation, which implies the convergence to an ε-optimal solution in �nitely many iter-
ations. The convergence has been con�rmed by a range of numerical tests. We however
remarked that on some instances the obtained bounds are quiet far from the optimum.
We thus propose a second relaxation that is shown to provide better bounds than the
previous one. As the iterative scheme used to solve the initial relaxation is not suitable
to solve this second relaxation, an overview of methods from the literature that could
instead be applied is given.

Most of the work presented in this chapter has been conducted in cooperation with Pierre
Le Bodic and Janny Leung. It has been presented at the International Network Opti-
mization Conference in Pisa (Italy) in April 2009. An extended abstract can be found
in the proceedings ([KBLL09]). The corresponding full article with authors S.K., Pierre
Le Bodic, Janny Leung and Abdel Lisser has been accepted for publication in Networks
([KBLL10]).

13

1 Introduction

1.3 Preliminaries

List of frequently used notations:

E[X] expectation of a random variable X

P{A} probability that event A occurs

[x]+ if x ∈ R: [x]+ := max(0, x)

if x ∈ Rn (n ≥ 2): [x]+ := (max(0, x1), . . . ,max(0, xn))T

J objective function

j in case J is a function in expectation, j denotes the function inside the
expectation, i.e. J(x) = E[j(x, χ)]

In identity matrix of dimension n× n

1n vector of ones of dimension n

On vector of zeros of dimension n

1Rn Indicator function of the positive real interval (Heaviside function)

1I Indicator function of the interval or set I, i.e. [1I(x) = 1⇔ x ∈ I]

x denotes in general the �rst-stage (or upper level) decision vector

y denotes in general the second-stage (or lower level) decision vector

χ vector of random variables

µ vector of means of the components of χ

σ vector of standard deviations of the components of χ

f density function of the standard normal distribution

F cumulative distribution function of the standard normal distribution

14

1.3 Preliminaries

Used abbreviations:

B&B branch-and-bound
CDF cumulative distribution function
PTAS Polynomial Time Approximation Scheme
FPTAS Fully Polynomial Time Approximation Scheme

Throughout this thesis, when mentioning a discrete probability distribution or a discretely
distributed random variable, we always refer to a random variable that can only take a
�nite number of values with nonzero probability.

15

2 The Simple Recourse Knapsack

Problem

2.1 Introduction

2.1.1 Simple Recourse Problems

Simple recourse problems are special cases of the more general two-stage problems (see
section 4 for more information on two-stage models). This means that decisions are made
in two steps: the �rst decision while the random variables are still unknown, the second,
corrective decision after the outcomes of the random variables have come to be known.
While simple recourse problems already appear in one of the �rst papers on stochastic two-
stage programming by Dantzig [Dan55], their detailed study only began with a publication
of Wets [Wet66].
Simple recourse problems can be stated in general as follows:

min cTx+ E [Q(x, χ)]

s.t. Ax = b, (2.1a)

x ∈ X. (2.1b)

Q(x, χ) = min q+y+ + q−y− (2.1c)

s.t. T (χ)x+ y+ ≥ h(χ), (2.1d)

T (χ)x− y− ≤ h(χ), (2.1e)

y+ ∈ Y +, y− ∈ Y −. (2.1f)

where c ∈ Rn1 , A ∈ Rm1×n1 , b ∈ Rm1 , q+, q− ∈ Rn2
+ and q+ + q− > 0. x ∈ X ⊆ Rn1

+ is the
�rst-stage decision vector of dimension n1 and y+ ∈ Y + ⊆ Rn2

+ and y− ∈ Y − ⊆ Rn2
+ are

the two second-stage decision vectors of dimension n2.
The technology matrix T (χ) ∈ Rm2×n2 of a two-stage or simple recourse problem is the
second-stage constraint matrix that multiplies the �rst-stage decision vector. In most
references on simple recourse problems this matrix is assumed to be �x, i.e. independent
of the random vector. In some publications (especially the early ones such as [Wet83]) the
de�nition of a simple recourse problem even contains this assumption as a requirement.
In the case of continuous simple recourse problems we haveX = Rn1

+ and Y + = Y − = Rn2
+ .

Simple integer recourse problems are de�ned as problems of type (2.1) where the second-
stage decision variables are required to be integer, i.e. Y + = Y − = Zn2

+ (see e.g. [LvdV93]
or [vdV95]).

17

2 The Simple Recourse Knapsack Problem

Continuous Simple Recourse Problems

When studying the second-stage problem of (2.1), one remarks that the second-stage
variable y+

i is bounded from below by max(0, (h(χ) − T (χ)x)i), while the second-stage
variable y−i is bounded from below by max(0, (T (χ)x − h(χ))i). In case of continuous
second-stage decision variables and as q+, q− ≥ 0, problem (2.1) can thus be reformulated
as a single-stage problem in the following way:

min cTx+ E
[
q+[h(χ)− T (χ)x]+

]
+ E

[
q−[T (χ)x− h(χ)]+

]
s.t. Ax = b, (2.2a)

x ∈ X. (2.2b)

For all i = 1, . . . , n2, let Ti(χ) denote the i-th row of T (χ) and hi(χ) the i-th component of
h(χ). Then de�ne the new random variable ξi(x) := hi(χ)−Ti(χ)x. Using this de�nition,
problem (2.2) can be reformulated as follows:

min cTx+

n2∑
i=1

(
q+
i E
[
[ξi(x)]+

]
+ q−i E

[
[−ξi(x)]+

])
s.t. Ax = b, (2.3a)

x ∈ X. (2.3b)

Note that this formulation only contains expectations of one-dimensional random vari-
ables. In particular we have (see e.g. [vdV95])

E
[
[ξi(x)]+

]
=

∫ ∞
0

ξi(x)φix(ξi(x))dξi(x) =

∫ ∞
0

(1− Φi
x(t))dt

and

E
[
[−ξi(x)]+

]
=

∫ 0

−∞
ξi(x)φix(ξi(x))dξi(x) =

∫ 0

−∞
Φi
x(t)dt

where φix is the density and Φi
x the cumulative distribution function of ξi(x).

We de�ne
gi(x) := q+

i E
[
[ξi(x)]+

]
+ q−i E

[
[−ξi(x)]+

]
.

The following results are well known and basis of most solution approaches for simple
recourse problems (see for example [NW86] or [vdV95]):

Theorem 2.1. Let E [ξi(x)] be �nite. Then the following holds:

1. For q+
i = q−i = 1 it is gi(x) = E [ξi(x)].

2. gi(x) = q−i E [ξi(x)] + (q+
i − q−i)E [[ξi(x)]+]

3. gi : Rn1 → R is a convex function.

4. For all x ∈ Rn1 gi(x) <∞.

18

2.1 Introduction

5. gi is Lipschitz continuous.

6. gi is di�erentiable wherever Φi
x is continuous.

7. If ξi(x) is discretely distributed, giis piecewise linear.

It follows that continuous simple recourse problems have a Lipschitz continuous and
convex objective function that is di�erentiable almost everywhere. They are thus in fact
"simple" to solve compared to general two-stage problems (see chapter 4).

Simple Integer Recourse

In case of integer second-stage decision variables (without upper bound) the objective
function of (2.2) can be replaced by

cTx+ E
[
q+dh(χ)− T (χ)xe+

]
+ E

[
q−dT (χ)x− h(χ)e+

]
Solving simple integer recourse problems is generally harder in the sense that one might
loose both the convexity as well as continuity properties. Concerning the latter, the
objective function of a simple integer recourse problems can be shown to be lower semi-
continuous. Moreover, it is continuous if and only if the random variables χi are contin-
uously distributed ([vdV95]). This implies that in case of discrete random variables we
also loose the convexity property. However, even in the case of continuously distributed
random variables convexity cannot be guarantied (see [KHSvdV06] for details). There-
fore a lot of work has been dedicated to the study of simple integer recourse problems
([LvdV93],[KHvdV94],[vdV95]), with special interest given to the question of convexity
and convexi�cation ([KHSvdV95], [KHSvdV96],[KHSvdV06]). Most of these publications,
however, concern the case where the technology matrix is �xed.

2.1.2 The Simple Recourse Knapsack Problem (SRKP)

In the main part of this chapter we will study the Simple Recourse Knapsack problem
with random weights. This problem is a simple recourse problem with binary �rst- and
continuous second-stage variables and a random technology vector. It can be described
in two equivalent ways:
When interpreted as a recourse model, the problem can be stated as follows: In the �rst
stage, we can choose among a set of items a subset to be added to the knapsack. This
decision is made without the exact knowledge of the item weights. In the second stage,
we are able to buy additional capacity in order to assure that the items chosen in the �rst
stage respect the capacity constraint. The overall objective is to maximize the expected
total gain, i.e. the bene�t from the chosen items minus the expected cost of the addition-
ally purchased capacity.
The problem can be seen as a single-stage decision problem as well. This means, that in
case that the chosen items do not respect the capacity, we simply have to pay a penalty
per overweight unit, i.e. no e�ective "decision" has to be made once the item weights

19

2 The Simple Recourse Knapsack Problem

have been revealed.
Notice that in both interpretations a correction of the �rst-stage decision is not possible,
i.e. the items chosen in the �rst stage cannot be removed (or additional items added) in
the second stage (see chapter 4).
In this chapter, we only work with the single-stage variant of the problem. Its mathe-
matical formulation is given in subsection 2.2. Some properties of the Simple Recourse
Knapsack problem are discussed in section 2.2.1.

2.1.3 Solving Simple Recourse Problems with continuous recourse

For most stochastic optimization problems one of the main di�culties consists in the
evaluation of the objective function, as this generally incorporates the computational
expensive estimation of a multi-dimensional integral. However, we have seen in section
2.1.1 that in case of a continuous simple recourse problem this multi-dimensional integral
is separable in the sense that it can be replaced by a sum of 1-dimensional integrals of
form similar to ∫ ∞

0

ξi(x)φi(ξi(x))dξi(x) =

∫ ∞
0

(1− Φi
x(t))dt

where ξi(x) = hi(χ) − Ti(χ)x is a one dimensional random variable with density and
cumulative distribution function φix and Φi

x, respectively. Moreover, continuous simple
recourse problems have some nice properties like convexity and (piecewise) di�erentiability
(see Theorem 2.1). They can therefore often be solved e�ciently with standard algorithms
for convex optimization.

Discretely distributed random variables

As with most stochastic optimization problems, a simple recourse problem can be equiv-
alently reformulated as a deterministic problem in case of discretely distributed random
variables (with known distribution). Let χ1, . . . , χK denote the possible outcomes of the
random vector χ and p1, . . . , pK the corresponding probabilities. Then the simple recourse
problem (2.1) is equivalent to the following programming problem with linear objective
and constraints:

min cTx+ q+

K∑
k=1

pkyk+ + q−
K∑
k=1

pkyk−

s.t. Ax = b, (2.4a)

yk+ ≥ h(χk)− T (χk)x ∀ k = 1, . . . , K, (2.4b)

yk− ≥ T (χk)x− h(χk) ∀ k = 1, . . . , K, (2.4c)

yk+ ≥ 0, yk− ≥ 0 ∀ k = 1, . . . , K, (2.4d)

x ∈ X, y+ ∈ Y +, y− ∈ Y −. (2.4e)

The number of variables as well as the number of constraints, however, grows with the
number of considered scenarios. Moreover, if χ is an n-dimensional random vector with

20

2.1 Introduction

independently distributed components and if we assume for its ith component Ki possible
outcomes, we obtain a total number of K =

∏n
i=1Ki ≥ (mini∈{1,...,n}Ki)

n scenarios, i.e.
the number of scenarios is exponential in the number of components of χ. So solving
(2.4) using common methods for linear programming might already be computationally
cumbersome for relatively small Ki ≥ 2.

The case of a �xed technology matrix: The �rst e�cient algorithm speci�cally cre-
ated for simple recourse problems has been presented by Wets in 1983 [Wet83]. The author
assumes a �xed technology matrix and a discretely distributed random right hand side
vector. The basic idea is to exploit the convexity and piecewise linearity of the problem
in order to obtain an equivalent reformulation that signi�cantly reduces the number of
constraints. More precisely, one obtains a linear programming problem with same number
of constraints as the problem obtained from (2.1) by replacing the random variables by
their mean. To solve the reformulation the author of [Wet83] applies an extension of the
revised simplex method. Although the number of variables in the reformulated problem
is of course much higher than in the original problem, numerical tests have shown that
the computing time needed to solve the simple recourse problem is comparable to that
needed to solve its deterministic counterpart.

The case of a random technology matrix: As already mentioned, most methods that
have been proposed for the continuous simple recourse problem assume the technology
matrix to be �xed. To the best of our knowledge, the only algorithm that has been
proposed speci�cally for simple recourse problems with random technology matrix is that
of Klein Haneveld and van der Vlerk proposed in [HvdV06]. Their algorithm is a so
called L-shaped method commonly used to solve stochastic problems with recourse (see
the introduction of chapter 4). However, contrary to the general L-shaped method the
algorithm presented in [HvdV06] makes use of the separability of the objective function.
As a consequence, less subproblems have to be solved at each iteration and the use of the
closed form of the recourse function leads to a decrease of the computational e�ort.

Continuously distributed random variables

For the case of continuously distributed random variables it has already been assumed
relatively early that the simplest approach is, in general, to approximate the continuous
distribution by a discrete one: On the one hand, the papers by Kall ([Kal74]) and by
Olsen ([Ols76]) show that by applying this idea one can approximate the optimal solu-
tion (value) of a simple recourse problem with continuously distributed random variables
to any desired precision. More important, it is possible to calculate error bounds and
iteratively improve upon obtained approximate solutions without resolving the problem
entirely at each iteration (see last section of [Wet83]).
Nowadays, a common approach to solve stochastic optimization problems with contin-
uously distributed random variables, with an intractable large number of scenarios or
under the assumption of a black-box model is the Sample Average Approximation (SAA)

21

2 The Simple Recourse Knapsack Problem

method (e.g. [PFaS96],[Sha96],[SH98],[KSH02],[SS04]). The SAA method is especially
interesting if the objective function cannot be easily evaluated. It can, in its simplest
form, be applied to problems of the following type:

min
x∈X

J(x) = E [j(x, χ)] (2.5a)

where X is a deterministic set and j is an easily computable function for given x and
χ. Most results from the literature concerning SAA approaches can therefore directly be
applied to the single-stage representation of the simple recourse problem (2.2).
Solving problem (2.5) by an SAA method means solving the following problem:

min
x∈X

ĴN(x) =
1

N

N∑
k=1

j(x, χk) (2.6a)

where {χ1, . . . , χK} is an independently and identically distributed sample of the random
vector χ. Note that the SAA method is not a solution algorithm but serves to approxi-
mate the given problem by another one.
Two particular continuous distributions should be mentioned here: In [Bea61] the author
shows that in case of uniformly distributed right hand sides the continuous simple recourse
problem with �xed technology matrix can be equivalently reformulated as a deterministic
convex quadratic optimization problem. In case of independently normally distributed
components of the technology matrix, problem (2.2) is equivalent to a deterministic con-
vex optimization problem with easily computable objective function and gradient (see
section 2.2.1 for an example of such reformulation). This is mainly based on the fact
that the linear combination of independently normally distributed random variables is
normally distributed, as well.

Integer �rst-stage variables

The problem treated in this chapter is neither a continuous simple recourse problem, nor
a simple recourse problem with integer recourse: While the �rst-stage variables are re-
quired to be integer (more precisely, binary), the second-stage variables are continuous.
To the best of our knowledge, no outstanding special purpose algorithm for this class of
problems has been presented in the literature.
It is clear that, based on the work by Wets [Wet83], the question of how to solve such a
problem is mainly the same as for solving general linear programs with integer variables.
Therefore, methods such as branch-and-bound, branch-and-cut or other integer program-
ming frameworks that involve solving linear subproblems are also e�cient for this kind
of problems. Furthermore, some algorithms have been proposed for general two-stage
problems with integer (or binary) �rst-stage solution, starting with the work of Wollmer
[Wol80].
Some few papers can be found that solve particular variants of simple recourse problems

22

2.1 Introduction

with integer �rst- and continuous second-stage variables, in general related to a practi-
cal problem such as capacity expansion ([Lag98]), vehicle routing [LLM92], shortest path
([VAK+03]) or the knapsack problem (see subsection 2.1.4).

2.1.4 Solving Simple Recourse Knapsack Problems

The Simple Recourse Knapsack problem has been solved in several publications:
The �rst to mention this variant of the stochastic knapsack problem were Cohn and Barn-
hart in [CB98]. Their study is motivated by a transportation problem. They propose three
di�erent kinds of upper bounds and use these in a specially created branch-and-bound
(B&B) framework. The latter is based on a dominance relationship and a ranking of the
items based on the mean and standard deviation of their weights (see sections 2.3.2 and
2.4 for more details). The authors assume independently normally distributed weights in
order to obtain a closed form for the objective function.
In [KSH02] the authors solve the Simple Recourse Knapsack problem by the use of an
SAA Approach. The proposed algorithm does not require any information about the
underlying probability distribution. However, the authors assume the weights to be inde-
pendently normally distributed in order to be able to evaluate the quality of the obtained
solutions. The SAA reformulation is solved using a B&B algorithm. Upper bounds are
given by the solution of the relaxed linear problem.
Recently, Fortz et al. ([FLLP08]) presented computational results for the case of normally
distributed weights: They use the fact that the obtained Simple Recourse Knapsack prob-
lem is a convex optimization problem with continuously di�erentiable objective function
that admits a representation in closed form. They use a nonlinear solver from the litera-
ture to solve the problem.
For the case of Poisson distributed weights the authors of [AG09] propose to solve the
deterministic equivalent formulation of the Simple Recourse Knapsack problem using a
B&B framework. Upper bounds are obtained by solving continuous relaxations based on
two observations: First, there always exists an optimal solution whose components are
all integer, except for at most one. Second, there exists an easily computable order of
the components of the solution vector such that all components that are lower in this
order than the fractional component have value zero, and all components that are higher
have value one. Moreover, the range of components that might be fractional is restricted.
It thus su�ces to solve simple one dimensional problems for each of these (potentially
fractional) components. Veri�cation of the Karush-Kuhn-Tucker conditions allows for the
immediate identi�cation of an optimal solution.
We propose to solve the Simple Recourse Knapsack problem using a slightly improved
version of the B&B algorithm by Cohn and Barnhart ([CB98]). The B&B algorithm is
one of the most common ways to solve deterministic knapsack problems. One of the
�rst papers in which the author solves the knapsack problem using a B&B algorithm is
[Kol67]. In [MT77] a method to calculate upper bounds for the 0−1 knapsack problem is
presented and used within a B&B algorithm. Recent work has been published in [SSL07]
where the authors propose a B&B algorithm for the more general polynomial knapsack

23

2 The Simple Recourse Knapsack Problem

problem. An example for a publication that uses the B&B algorithm to solve a stochastic
version of the knapsack problem is [CSW93].
Contrary to the work of Cohn and Barnhart, we propose to provide upper bounds for
the B&B algorithm by solving continuous relaxations of the Simple Recourse Knapsack
problem using a stochastic gradient algorithm. Stochastic gradient algorithms are de-
signed to solve (unconstrained) problems with the objective to optimize the expectation
of a certain value. This type of algorithms can be seen as a combination of Monte-Carlo
approximation and gradient method. More precisely, instead of using the gradient of the
objective function, the algorithm uses the gradient of the function inside the expectation.
By computing this gradient for a (di�erent) sample of the random variables in each iter-
ation the expectation of the objective is approximated.
First papers on such iterative stochastic approximation methods where released in the
middle of the last century ([RM51], [KW52],[EN67]). Since then, an extensive amount of
theoretical results on the convergence of the stochastic gradient algorithm and its variants
has been published ([Pol90], [LY98]). The method has found many applications, particu-
larly in machine learning and control theory. For a survey, see the books by [NH76] and
by [KY03].
Clearly, solving the continuous Simple Recourse Knapsack problem with a stochastic gra-
dient algorithm seems problematic as the function inside the expectation of the objective
function is not di�erentiable at all points (see the mathematical formulation of the SRKP
(2.7)). We therefore approximate the needed gradient using approximation by convolution
(three more methods are presented in chapters 3 and 4). In [ACVA07] this approach has
been proposed for chance-constrained optimization problems (see also chapter 3). The
underlying molli�er technique, however, has already been used beforehand, for example
to minimize semi-continuous functions (see [ENW95]).
In this chapter we assume the item weights to be independently normally distributed.
The main impact of this assumption on our solution technique is that we have a closed
deterministic equivalent reformulation of the objective function which allows for its simple
evaluation. Moreover, we can directly compare our algorithm with the work of Cohn and
Barnhart [CB98]. We, however, think that our method (contrary to previously proposed
methods) can be easily extended to other continuous distributions or even to the case of
a black-box assumption (see also the conclusion 2.5 and Future Work section 6.1).

2.2 Mathematical formulation

In the remainder of this chapter, we consider a stochastic knapsack problem of the fol-
lowing form: Given a knapsack of capacity c and a set of n items. Each item has a weight
that is not known in advance, i.e. the decision of which items to put in the knapsack
has to be made without the exact knowledge of their weights. Therefore, we handle the
weights as random variables and assume that weight χi of item i is independently nor-
mally distributed with mean µi > 0 and standard deviation σi. Furthermore, each item
has a predetermined reward per weight unit ri > 0. The choice of a reward per weight

24

2.2 Mathematical formulation

unit can be justi�ed by the fact that the value of an item often depends on its weight
which we do not know in advance. However, all the methods applied and studies made
in this chapter are still valid if the item rewards were independent of the item weights,
either deterministic or random with known mean. In case the chosen items do not respect
the knapsack capacity, a penalty d > 0 per overweight unit has to be paid. A possible
mathematical formulation of this problem is the following:

The Simple Recourse Knapsack problem (SRKP)

max
x∈{0,1}n

E[
n∑
i=1

riχixi]− d · E[[
n∑
i=1

χixi − c]+] (2.7)

2.2.1 Properties of the SRKP

As we are in the case of a single recourse problem with binary �rst-stage but continuous
second-stage decision variables, the objective function can be shown to be concave and
Lipschitz continuous for any probability distribution of the random vector χ (see Theorem
2.1).
In the case of a discretely distributed random vector χ with known distribution, the
SRKP can be reformulated as a deterministic linear combinatorial optimization prob-
lem: For i ∈ {1, . . . , n}, let χ1, . . . , χK be the possible outcomes of χ and p1, . . . , pK the
corresponding probabilities. Then problem (2.7) can be stated as follows:

The Simple Recourse Knapsack problem with discretely distributed weights

max
x,z

n∑
i=1

ri

(
K∑
k=1

pkχki

)
xi − d ·

K∑
k=1

pkzk (2.8)

s.t. zk ≥
n∑
i=1

χki xi − c ∀ k = 1, . . . , K, (2.9)

zk ≥ 0 ∀ k = 1, . . . , K, (2.10)

x ∈ {0, 1}n. (2.11)

(2.12)

For the case of continuously distributed weights, let us de�ne the random variable ξx :=∑n
i=1 χixi. Then problem (2.7) can be stated as follows:

The Simple Recourse Knapsack problem with continuously distributed weights

max
x∈{0,1}n

n∑
i=1

riµixi − d ·
∞∫
c

(ξx − c)ϕx(ξx) dξx (2.13)

where ϕx is the density function of ξx. In the particular case of independently normally
distributed random variables χi, ξx is normally distributed with mean µ̂x :=

∑n
i=1 µixi,

25

2 The Simple Recourse Knapsack Problem

standard deviation σ̂x :=
√∑n

i=1 σ
2
i x

2
i , density function ϕx(ξ) = 1

σ̂x
f(ξx−µ̂x

σ̂x
) and CDF

Φx(y) = F (y−µ̂x
σ̂x

). Based on these de�nitions, we can rewrite the objective function J of
the SRKP in a deterministic way using the following:

E[[
n∑
i=1

χixi − c]+] =

∞∫
c

(ξx − c) · ϕx(ξx) dξx

=

∞∫
c

ξx · ϕx(ξx) dξx − c
∞∫
c

ϕx(ξx) dξx

= µ̂

∞∫
c

ϕx(ξx) dξx + σ̂2
x

∞∫
c

ϕ′x(ξx) dξx − c
∞∫
c

ϕx(ξx) dξx

= σ̂2
xϕx(c) + (µ̂x − c) [1− Φx(c)]

= σ̂x · f(
c− µ̂x
σ̂x

) + (µ̂x − c) ·
[
1− F (

c− µ̂x
σ̂x

)

]
This leads to the following deterministic equivalent objective function in case of indepen-
dently normally distributed weights:

Jdet(x) =
∑
i

riµixi − d ·
[
σ̂x · f

(
c− µ̂x
σ̂x

)
− (c− µ̂x) ·

[
1− F

(
c− µ̂x
σ̂x

)]]
(2.14)

Clearly, normally distributed random variables can have negative realizations. Assum-
ing normally distributed weights might thus seem contradictory to the fact that item
weights are always strictly positive. However, in most real life applications the ratio vari-
ance/mean of the unknown parameters is rather small. In this case, the probability of
negative weights becomes negligible.

2.3 Problem Solving Method

Our basic idea to solve the SRKP is to use a B&B framework as presented in [CB98]
and to solve relaxations of the SRKP in order to provide upper bounds. As the objective
function of the SRKP is concave, the continuous relaxations are concave optimization
problems and we propose to apply a stochastic gradient algorithm to solve them (see Al-
gorithm 2.3.1). While such an algorithm could be used even if the probability distribution
is unknown and only a black-box is available, we assume in this chapter that the random
variables are independently normally distributed, for two reasons:

26

2.3 Problem Solving Method

1. In case of independently normally distributed random variables the objective func-
tion can be easily computed and the quality of the found solutions can thus be
evaluated easily (see section 2.2.1).

2. In case of independently normally distributed random variables we can apply the
B&B algorithm presented by Cohn and Barnhart in [CB98] and compare our results
with the results obtained when using their approach.

This subsection is subdivided into two parts: In the �rst one we present the stochastic
gradient algorithm. As this algorithm requires the computation of the gradient of the non-
di�erentiable function [x]+, we propose a method using approximation by convolution
(hereafter called AbC method) to obtain an estimate of this gradient. In the second
subsection, we present the applied B&B algorithm.

2.3.1 The Stochastic Gradient Algorithm and Approximation by
Convolution Method

A stochastic gradient algorithm is an algorithm that combines both Monte-Carlo tech-
niques and the gradient method often used in convex optimization. Here, the former is
used to approximate the gradient of the objective function that is a function in expecta-
tion. More precisely, if the objective function is J(x, χ) = E[j(x, χ)], we use at iteration
k+ 1 the gradient ∇xj(x

k, χk) (where χk is a random sample of χ) instead of ∇xJ(xk, χ).
In the case of the SRKP , we have j(x, χ) =

∑
i riχixi− d · [

∑n
i=1 χixi− c]+. As j is not

Stochastic Gradient Algorithm

• Choose x0 in Xad = [0, 1]n

• At iteration k + 1, draw a sample χk = (χk1, ..., χ
k
n) of χ according to its normal

distribution
• Update xk as follows:

xk+1 = xk + εkrk

where rk = ∇xj(x
k, χk) and (εk)k∈N is a σ-sequence

• For all i = 1, ..., n: If xk+1
i > 1 set xk+1

i = 1 and if xk+1
i < 0 set xk+1

i = 0

Algorithm 2.3.1

di�erentiable at all points, we approximate its gradient using approximation by convolu-
tion (for further details on this method see [ENW95] or [ACVA07]). More precisely we
approximate the indicator function 1R+ : It is replaced by the convolution of 1R+ and a
function ht(x) := 1

t
h
(
x
t

)
that approaches the Dirac function when the parameter t goes

27

2 The Simple Recourse Knapsack Problem

to zero. The convolution of two functions is de�ned as follows:

(ρ ∗ h)(x) :=

∞∫
−∞

ρ(y)h(x− y) dy

Using a pair, continuous and nonnegative function h with
∞∫
−∞

h(x) dx = 1 having its

maximum in 0, we get the following approximation of a locally integrable real valued
function ρ:

ρt(x) := (ρ ∗ ht)(x) =
1

t

∞∫
−∞

ρ(y)h

(
y − x
t

)
dy

For ρ = 1R+ , we have:

ρt(x) =
1

t

∞∫
0

h

(
y − x
t

)
dy =

1

t

∞∫
0

h

(
x− y
t

)
dy

and so

(ρt)
′(x) =

1

t2

∞∫
0

h′
(
x− y
t

)
dy = −1

t
h
(x
t

)
Based on this, we obtain the following approximation∇(jt)x of the gradient of the function
j:

∇(jt)x(x, χ) = (r1χ1, ..., rnχn)T

− d ·

(
−1

t
· h

(∑
i χixi − c
t

)
· χ · (

n∑
i=1

χixi − c) + 1R+(
n∑
i=1

χixi − c) · χ

)

Various functions may be chosen for h. In [ACVA07] the authors study di�erent such
choices. For each one of them, they compute a reference value for the mean square error
of the obtained approximated gradient. It turns out that, among the presented functions,
h := 3

4
(1−x2)1]−1,1[(x) is the best choice. This leads us to the following estimation of the

gradient of j:

∇(jt)x(x, χ) = (r1χ1, ..., rnχn)T

+ d ·

(
3

4t

(
1−

(∑
i χixi − c
t

)2
)
11

(∑
i χixi − c
t

)
· χ · (

n∑
i=1

χixi − c)

− 1R+(
n∑
i=1

χixi − c) · χ

)

28

2.3 Problem Solving Method

2.3.2 The Branch-and-Bound Algorithm

To calculate lower bounds on the optimal solution value, we use a B&B algorithm based
on an algorithm presented in [CB98]. In the following subsection we �rst explain and
justify the ranking of the items using dominance relationships. Then, we present the
B&B algorithm (see algorithm 2.3.2).

Ranking the items

In order to de�ne the binary tree used in the B&B algorithm, we rank our items: First, we
introduce dominance relationships. The items are then ranked according to the number
of items they dominate. If several items dominate the same number of items, they are
ranked by their value of r2i

σi
.

The dominance relationships are also used to prune subtrees during the B&B algorithm
in order to decrease the number of considered nodes and evaluated branches: Whenever
an item is rejected, we also reject all those items that are dominated by the rejected one.
To introduce dominance relationships for the SRKP with normally distributed weights,
we consider the variations of the (deterministic equivalent) objective function Jdet (2.14).
Clearly, the increase of one of the rewards per weight unit rj increases the objective func-
tion if and only if xj > 0.
To study the variations when changing the value of σ̂x, we calculate the derivative of Jdet
with respect to σ̂x:

∂Jdet
∂σ̂x

(x) = −d · f
(
c− µ̂x
σ̂x

)
As f is strictly positive, this shows that whenever an item is replaced by another one
having the same mean and reward per weight unit but smaller variance, the value of the
objective function increases. Based on this study, [CB98] introduced two types of domi-
nance relationships: We say that item i dominates item k if one of the following holds:

1. µi = µk, ri ≥ rk, σi ≤ σk

2. µi ≤ µk, σi ≤ σk, ri · µi ≥ rk · µk

The Branch-and-Bound Algorithm

B&B algorithm 2.3.2 is based on the B&B algorithm by [CB98]. We just added step 4.
In step 5 the calculation of upper bounds for subtrees is realized by �xing the value of
items that are higher in the tree at 1 or 0 and solving the continuous problem having the
xi of the remaining items as decision variables. In the case of the SRKP and the applied
stochastic gradient algorithm this is easily done: At each iteration, we just leave out the
recalculation of the �xed xi.

29

2 The Simple Recourse Knapsack Problem

Branch-and-Bound Algorithm

1. Rank the items as described in section 2.3.2. This ranking de�nes the binary tree
with the highest ranked item at the root.

2. Plunge the tree as follows: Beginning at the root of the tree, add the current item
if and only if the objective function increases. Assign the maximum value of the
objective function found to the variable INF. This variable stores the current lower
bound of the objective function. Add the found branch to the list of branches. Set
the associated upper bound SUP to in�nity.

3. If there is no branch left on our list of branches, go to step 7.
Else take the branch of our list of branches having the maximum objective function
value. Go to step 4.

4. If the associated upper bound SUP is greater than the current lower bound INF,
go to step 5.
Else delete the branch from the list. Go to step 3.

5. If there is no accepted item left in the selected branch that does not already have
a plunged or rejected subtree, delete the branch from the list. Go back to step 3.
Else, following our ranking, choose the �rst accepted item that does not already
have a plunged or rejected subtree. Calculate an upper bound SUP for the subtree
de�ned by rejecting this item. Go to step 6.

6. If SUP ≤ INF, reject this subtree, go to step 5.
Else plunge the subtree as described in 2 and add the found branch together with
the value SUP to the list of branches. If the value of the objective function of this
branch is greater than INF, update INF.
Go to step 3.

7. The current value INF is the optimal solution value of problem (2.7).

Algorithm 2.3.2

2.4 Numerical results

The �rst part of this section contains the results of the algorithm for solving the continu-
ous SRKP , namely the stochastic gradient method. In the second part of the section, the
results for the B&B algorithm are presented. Both algorithms have been implemented
in C-language. All tests were carried out on an Intel PC with 1GB RAM. We tested
our methods on the same dataset as in [CB98] as well as a sample of randomly created
instances for each of the chosen dimensions. The Cohn-instance is presented in Table 2.1.
The last column states the value of the ratio r2

i /σi needed for the ranking of the items.
The penalty factor used is 5. For the random datasets, the weight means were generated
from a normal distribution with mean 225 and standard deviation 25, the variances from
a uniform distribution on the interval [5, 50] and the rewards per weight unit were chosen
to have equal probability to be 1, 2 or 3. As in the Cohn-instance, the penalty factor is 5.
For each dimension we created 50 instances. Tables 2.2 and 2.3 show the average values

30

2.4 Numerical results

over these 50 instances.
We compared our algorithm with the method of Cohn and Barnhart presented in [CB98].
In their paper, they propose three di�erent upper bounds to use within their B&B al-
gorithm. However, they do not give any details of which upper bound to use at which
moment. In order to compare our approach with that of Cohn and Barnhart, we there-
fore computed their upper bounds one after another in step 5 of our B&B algorithm. As
soon as an obtained bound is su�ciently tight to prune the currently evaluated subtree,
we leave out the computation of the remaining bounds. This procedure assures that the
number of considered nodes is at most as large as when using their exact policy.

Ob-
ject

reward per
weight unit

ri

mean of
the weight

µi

variance of
the weight

σ2
i

r2i
σi

1 2 212 47 0.583
2 2 203 21 0.873
3 3 246 42 1.389
4 2 223 21 0.873
5 2 230 15 1.033
6 1 233 10 0.316
7 2 235 11 1.206
8 2 222 33 0.696
9 1 210 36 0.167
10 2 299 42 0.617
11 2 256 25 0.800
12 3 250 19 2.065
13 1 194 24 0.204
14 3 207 22 1.919
15 1 182 14 0.267

Table 2.1: Values of the Cohn-instance

2.4.1 The continuous SRKP

An example for the convergence of the stochastic gradient method involving the AbC
method is presented in Figure 2.4.1. As shown in the �gure and con�rmed by numerical
tests, the best result found does not change very much (less than 1%) after iteration 500.
Based on this observation, we used in the following a stopping criterion for the stochastic
gradient algorithm of 500 iterations. In Table 2.2 we compare on the one hand the found
optima of the continuous problems with the lowest upper bound proposed in [CB98].
On the other hand, we compare the CPU-time (in milliseconds) of the stochastic gradient
algorithm with the time needed to compute all three upper bounds of Cohn and Barnhart.

31

2 The Simple Recourse Knapsack Problem

0 200 400 600 800 1000 1200 1400 1600 1800 2000
4650

4655

4660

4665

4670

4675

Number of iterations of the stochastic gradient algorithm

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Figure 2.4.1: Convergence of the stochastic gradient algorithm solving the continuous
SRKP

C./B. stands for Cohn/Barnhart, i.e. for the (unique) Cohn-instance of dimension 15.
We observe that especially for small dimensions it takes much less time to compute

all three upper bounds proposed by Cohn and Barnhart than to solve the continuous
relaxation by a stochastic gradient algorithm. But, while the CPU-time of the stochastic
gradient algorithm increases proportional to the dimension, this is not the case for the
upper bounds proposed by Cohn and Barnhart.

2.4.2 The combinatorial SRKP

The numerical results for the combinatorial problem are shown in Table 2.3. Notice that
the CPU-time needed by the B&B algorithm (columns 6 and 11) is given in seconds.
Columns 5 and 10 contain the number of considered nodes, i.e. the number of times an
upper bound is calculated during the B&B algorithm. We allowed an average CPU-time
of 1h. ∗ indicates that an average computing time of more than 1h would have been
needed to solve all instances of this dimension.
We observe that when using the upper bounds of Cohn and Barnhart during the B&B
algorithm much more nodes have to be considered. This can be explained by the less
tighter upper bounds and, consequently, a smaller number of rejected subtrees. For small
dimensions (n = 15, 20, 30) this is counterbalanced by the small CPU-times needed to cal-
culate one upper bound. In the case of higher dimensional problems, the B&B algorithm
involving a stochastic gradient algorithm becomes more competitive due to the tighter
upper bounds and the resulting smaller number of considered nodes.

32

2.5 Concluding remarks and future work

Stochastic gradient &
Approx. by
convolution

Cohn/Barnhart

n Optimum
relaxation

CPU-time
(msec)

Lowest
upper
bound

CPU-time
(msec)

C./B. 4676.208 4 4759.000 < 1

15 4934.583 4 5146.927 < 1
20 6690.744 6 6936.017 < 1
30 10279.908 9 10529.541 < 1
50 16954.343 12 17224.803 < 1
75 25519.688 16 25811.775 < 1
100 33846.095 22 34131.754 < 1
150 50607.008 31 50932.104 < 1
250 85098.136 52 85459.649 1
500 170110.459 104 170503.708 3
1000 340922.966 240 340822.740 5
5000 1703811.095 1110 1704935.949 107
20000 6813327.586 4940 6815663.089 1759

Table 2.2: Numerical results for the continuous SRKP

As mentioned, Table 2.3 only shows the results for the combinatorial problem in the case
where the average CPU-time over all 50 instances is at most 1h. In case of the B&B
algorithm involving the stochastic gradient algorithm, this limit is respected when n = 75
but exceeded when n = 100. For n = 100, the CPU-time is smaller or equal to 2h in
about 78% of the cases and only 6% of the instances needed more than 24h to terminate.
For n = 150, 44% of the tests �nished in at most 2h and 56% of the instances needed not
more than 24h.

2.5 Concluding remarks and future work

In this chapter we studied and solved a Simple Recourse Knapsack problem with random
weights. We applied a B&B algorithm and solved continuous subproblems in order to
provide upper bounds. The latter was done using a stochastic gradient method. Approx-
imated gradients were computed by applying an Approximation by Convolution molli�er
technique.
We want to remark at this point that the function j inside the expectation of the ob-
jective function of the Simple Recourse Knapsack problem studied is not di�erentiable
everywhere, but subdi�erentiable. Instead of a stochastic gradient algorithm we could
thus have chosen a stochastic subgradient method. This will be done in the next section

33

2 The Simple Recourse Knapsack Problem

Stochastic gradient & Approximation by convolution

n Upper
Bound

CPU-time
(msec)

continuous

Optimum considered
nodes

CPU-time
(sec)

B-and-B

C./B. 4676.208 4 4618 100 0.342

15 4934.583 4 4890 41 0.139
20 6690.744 6 6651 80 0.348
30 10279.908 9 10265 455 2.808
50 16954.343 12 16951 13173 131.171
75 25519.688 16 25514 63972 934.550
100 33846.095 22 * * *

Cohn/Barnhart

n Upper
Bound

CPU-time
(msec)

continuous

Optimum considered
nodes

CPU-time
(sec)

B-and-B

C./B. 4759.000 < 1 4618 144 0.000

15 5146.927 < 1 4890 65 0.002
20 6936.017 < 1 6651 280 0.003
30 10529.541 < 1 10265 2525 0.037
50 17224.803 < 1 16951 364960 779.325
75 25811.775 < 1 * * *
100 34131.754 < 1 * * *

* average CPU-time exceeds 1h

Table 2.3: Numerical results for the (combinatorial) SRKP

to solve the Chance-Constrained Knapsack problem. Moreover, as j is only nondi�eren-
tiable on a null set, this set of points could have been "neglected" as we are, in the end,
interested in the expectation of the gradient. In other words, the probability to draw a
sample of the random parameters for a given decision such that j is nondi�erentiable at
the obtained point is zero, anyway.
We compared the B&B algorithm involving the stochastic gradient method numerically
with a method proposed by Cohn and Barnhard in ([CB98]). Our tests have shown
that the upper bounds obtained by solving continuous relaxations are tighter than those
proposed in [CB98]. Consequently, less nodes had to be considered during the B&B al-
gorithm. This resulted for large size problems in smaller CPU-times. With a maximum
average computing time of 1h we were thus able to solve problems of up to 75 items, while
the method of Cohn and Barnhart only solved instances of up to 50 items.
In this chapter we assumed the item weights to be independently normally distributed.

34

2.5 Concluding remarks and future work

For this special case Fortz et al. recently presented excellent numerical results by refor-
mulating the problem deterministically and using a commercial nonlinear solver to solve
the obtained problem ([FLLP08]). Contrary to their approach, our method seems, how-
ever, to be easily adaptable to other distributions. In fact, the assumption of a normal
distribution is only once (directly) used when we establish the dominance relationships
and rank the items. Other dominance relationships might be established for di�erent
distributions or one might use a standard B&B algorithm that makes use of the solutions
of the continuous subproblems to decide on which item to branch. Indirectly, we use the
property that in case of independently normally distributed weights the objective func-
tion of the Simple Recourse Knapsack problem can be easily computed which is a great
advantage for both B&B and stochastic gradient algorithm. Studying the adaptation of
our method to other distributions (or the black-box assumption) and di�erent stochastic
combinatorial problems will be an important step to show the applicability of our method
on a larger scale.
In this chapter we studied an unconstrained simple recourse problem. However, one could
imagine extensions of the model to other problems that require additional (deterministic)
constraints. To solve these kinds of problems our method can be adapted by replacing
the stochastic gradient method by a projected stochastic gradient method. Nonnega-
tivity constraints can be handled by an active set strategy. In [KL10b] we chose such
an approach to solve a Simple Recourse Shortest Path problem. Due to an open ques-
tion concerning the (deterministic) active set method numerical results have not yet been
achieved.
In the next section, we will extend the work presented in this section: Instead of a Simple
Recourse Knapsack problem, we will solve a Chance-Constrained Knapsack problem. Al-
though the basic idea of the solution method is the same, the case of a chance-constraint
turns out to be somewhat harder. In addition to numerical tests we therefore give a
theoretical analysis of the convergence of the stochastic gradient algorithm when applied
to this kind of problems. As already mentioned, two more alternative approaches to
the problem of nondi�erentiability of the objective function (resp. constraint) will be
presented. These could be applied to the Simple Recourse Knapsack problem, as well.

35

3 The Chance-Constrained

Knapsack Problem

3.1 Introduction

3.1.1 Chance-Constrained Problems

Chance-constrained stochastic optimization problems are part of the class of static stochas-
tic problems. This means, that one has to make its decision once for all and independently
of the outcomes of the random parameters. In contrary, the two-stage models with full re-
course that we will discuss in the next chapter are part of the dynamic stochastic problem
type class, where at least one (partial) decision can be made after (part of) the random
parameters have come to be known. The simple recourse problems studied in the previous
chapter are at the boundary of both problem classes: Some authors see them as static
stochastic problems as the second-stage penalty is not interpreted as an actual decision
(see [Pré95]). Other authors emphasize the two-stage structure of simple recourse prob-
lems with a second-stage decision that consists in adapting the right hand side of the
constraints optimally in order to make the �rst-stage decision feasible (see for example
[KW94]).
A chance-constrained model can be considered wherever one's decision might lead to a vi-
olation of one or more of the constraints once the random parameters are known. If we are
willing to take this risk in a small percentage of cases, we can replace the corresponding
deterministic constraint Ax ≤ b by the following chance-constraint:

P{A(χ)x ≤ b(χ)} ≥ p (3.1)

where χ is once more a random vector and p a prescribed probability threshold. Similar
to the case of simple recourse and two-stage problems, the matrix A(χ) is often called
technology matrix.
The interpretation of constraint (3.1) is that we require our decision x to satisfy the
constraint A(χ)x ≤ b(χ) for at least a fraction p of the possible outcomes of the random
vector χ. If the matrixA contains more than one row, the constraintA(χ)x ≤ b(χ) consists
of a set of linear constraints aj(χ)x ≤ bj(χ) and constraint (3.1) should be interpreted as
the joint chance-constraint

P{a1(χ)x ≤ b1(χ), . . . , am(χ)x ≤ bm(χ)} ≥ p (3.2)

37

3 The Chance-Constrained Knapsack Problem

where m is the number of rows of A. This constraint requires the m constraints a1(χ)x ≤
b1(χ), . . . , am(χ)x ≤ bm(χ) to be "jointly" satis�ed with at least probability p. Equiva-
lently, (3.2) can be stated as follows:

P{∃i ∈ {1, . . . ,m} : ai(χ)x > bi(χ)} ≤ 1− p (3.3)

i.e. we restrict the probability that one or more of the constraints ai(χ)x ≤ bi(χ) might
be violated by our decision to 1− p (see chapter 5 where this formulation is chosen with
a corresponding taken risk denoted α).
In contrary, the separate or individual chance-constraints

P{aj(χ)x ≤ bj(χ)} ≥ pj ∀ j = 1, . . . ,m (3.4)

restrict the probability of a violation for each constraint separately. Separate chance-
constraints are clearly less restrictive, as we could theoretically obtain an optimal solution
that, for any outcome of the random parameters, violates at least one constraint. More
precisely, if pj ≤ p for all j = 1, . . . ,m, we have that any solution x that satis�es constraint
(3.2) also satis�es the set of constraints (3.4), while the reverse is only assured to be true
if
∑m

j=1(1− pj) ≤ 1− p.
Another di�erence between the joint chance-constraint (3.2) and the separate chance-
constraints (3.4) concerns the question of how to evaluate the left hand side(s) of the
constraint(s). In the case of separate chance-constraints this evaluation is in general
easier: Let us de�ne the random variables Xj = aj(χ)x − bj(χ) =

∑n
i=1 a

i
j(χ)xi − bj(χ)

(j = 1, . . . ,m). Then, the right hand side P{aj(χ)x ≤ bj(χ)} is equal to the function
value of the CDF of Xj at the point 0.
In case of the joint chance-constraint (3.2) it is clear that the main problem lies in the
possible (or even probable) dependencies of the random variables Xj. Only in case of
independence between any two variables Xj and Xj′ , i.e. if (aTj , bj) and (aTj′ , bj′) do not
depend on the same random vector χ, the left hand side of the joint chance-constraint
might be evaluated with the help of the following equality:

P{a1(χ1)x ≤ b1(χ1), . . . , am(χm)x ≤ bm(χm)} =
m∏
j1

P{aj(χj)x ≤ bj(χj)} (3.5)

In the rest of the cases, one needs in general the joint probability distribution of the
random vector (X1, . . . , Xm) to evaluate the left hand side of the chance-constraint.
To the best of our knowledge, chance-constraints have �rst been mentioned in a paper by
Charnes, Cooper and Symonds [CCS58]. The authors propose a model to optimize the
production of heating oil. The demand of heating oil is clearly weather depending and
thus highly random. The authors introduce two chance-constraints in their model, one
concerning the sales demands that have to be met and one concerning storage limitations.
In a subsequent paper [CC59], Charnes and Cooper �rst mention the expression chance-
constrained programming. Both papers only treat the case of separate chance-constraints.
Joint chance-constraints were �rst studied by Miller and Wagner in [MW65]. The authors

38

3.1 Introduction

study the case of two jointly constrained linear constraints under the assumption that any
random parameter of the �rst constraint is independent from any random parameter of
the second one.
Main contributions to the understanding of chance-constrained optimization problems,
especially concerning the case of joint constraints with dependent parameters, have been
achieved by Prékopa in his papers [Pré70] and [Pré72]. In his works, Prékopa uses the
expression probability-constraint instead of chance-constraint. One of the main results of
the paper from 1972 is the following:

Theorem 3.1 (Prékopa [Pré72]). Let gi(x, y) (i = 1, . . . ,m) be concave functions on
Rn+K (where x is an n-dimensional and y a K-dimensional vector). Let further χ be
a K-dimensional random vector with logarithmic concave probability distribution. Then,
the left hand side x-function of the joint chance-constraint

P{gi(x, χ) ≥ 0, i = 1, . . . , r} ≥ p (3.6)

is logarithmic concave in the entire space Rn.

The following corollary is immediate, as by applying the negative logarithm to both
sides of a logarithmic concave chance-constraint of type (3.1), we obtain a constraint of
the form G(x) ≤ C with convex left hand side function G:

Corollary 3.2 (Prékopa [Pré72]). Let gi(x, y) (i = 1, . . . ,m) be concave functions on
Rn+K (where x is an n-dimensional and y a K-dimensional vector). Let further χ be a
K-dimensional random vector with logarithmic concave probability distribution. Then the
joint chance-constraint

P{gi(x, χ) ≥ 0, i = 1, . . . , r} ≥ p (3.7)

de�nes a convex set.

The conditions for these two results have later been weakened by Tamm ([Tam76],[Tam77])
who showed that the requirement of concavity for the functions gi can be replaced by
quasi-concavity. This result is surely the most cited and most used result in chance-
constrained programming as it de�nes a class of convex chance-constrained stochastic
optimization problems. It can be generalized to the case of r-concave distributions imply-
ing r-concavity of the left hand side function of the chance-constraint (see e.g. [SDR09])
and thus r-convexity of the corresponding feasible set.
Concerning the initially studied chance-constraint (3.1), the above results directly apply
to the following two special variants, provided that χ has a logarithmically (resp. r-)
concave probability distribution:

P{Ax ≤ χ} ≥ p and P{χTx ≤ c} ≥ p (3.8)

where A is a deterministic matrix and c a constant. More results on chance-constraints
can be found in the book by Prékopa [Pré95] and the very recently published lectures by
Shapiro et al. [SDR09].

39

3 The Chance-Constrained Knapsack Problem

Discrete probability distribution

In the case of only �nitely many outcomes χ1, . . . , χK of the random vector χ with cor-
responding strictly positive probabilities p1, . . . , pK , it is often possible to replace the
chance-constraint (3.1) by a set of linear constraints. To do this, we however require the
components of the left hand side vector A(χ)x to be bounded from above for all feasible
decisions x. This is naturally the case if the components of x are bounded, for example in
case of a binary decision vector (see e.g. [Lop10]), or, more general, if x lies in a compact
set (see [Rus02]). More precisely, if there exists an M such that for any feasible decision
x and any outcome χ̂ of χ we have

A(χ̂)x− b(χ̂) ≤M1n

constraint (3.1) can be replaced by the following set of deterministic constraints:

A(χk)x ≤ b(χk) +M(1− zk)1m ∀ k = 1, . . . , K (3.9)
K∑
k=1

pkzk ≥ p (3.10)

zk ∈ {0, 1} ∀ k = 1, . . . , K (3.11)

Here, for any scenario k, we introduced an additional binary decision variable zk. In case
that scenario k is chosen to be neglected, zk is set to 0. This "disables" the constraint
A(χ)x ≤ b(χ) for the outcome χk of the random vector as in this scenario the constraint
is satis�ed for any feasible decision x (see constraints (3.9)). In case we require the con-
straint A(χ)x ≤ b(χ) to be active in scenario k, we set zk = 1. Clearly, the probability
that one of these "active" scenarios occurs must be at least p (see constraint (3.10)).
One could as well choose the reformulation in a way that the binary variable zk is set to
one if the corresponding scenario is rejected (see chapter 5).
In case of a discretely distributed random vector χ and a bounded left hand side of the lin-
ear constraint, the problem of how to evaluate the chance-constraint is solved. However,
for K scenarios the chance-constraint is replaced by K + 1 deterministic constraints and,
more important, we have to introduce K (additional) binary variables. Especially if the
random variables are independent, K can be very large and the deterministic equivalent
problem becomes intractable.
In the case of an unbounded left hand side or integer random variables, the case is some-
what more complicated. Most work in this direction concerns chance-constraints where
only the right hand side b(χ) = χ is random, while the technology matrix A(χ) = A is
deterministic. In this case, one can de�ne for p ∈ (0, 1) the set of points Zp ⊂ Rm such
that for all z ∈ Zp it is P{z ≤ χ} ≥ p and there is no y ≥ z such that P{y ≤ χ} ≥ p 1.
It is clear that these points are a subset of all the possible outcomes of χ. In case of a

1Note that due to our formulation of the chance-constraint and following the common de�nition of p-
e�cient points, the points in Zp are not the p-e�cient points of the distribution of χ, but the negatives
of the p-e�cient points of the distribution of −χ.

40

3.1 Introduction

�nite number of scenarios, Zp is thus �nite. It is also nonempty, as there exists always a
vector z such that P{χ ≥ z} ≥ p (for z = χmin := (mink χ

k
1, . . . ,mink χ

k
m) we even have

P{χ ≥ z} = 1). For the case of integer random variables, Dentcheva et al. showed the
following:

Theorem 3.3 (Theorem 1 in [DPR00]). Let p ∈ (0, 1). Then, in case of an integer
random vector, the set Zp is nonempty and �nite.

Based on these observations and using an enumeration of the �nitely many points
in Zp, the chance-constraint (3.1) with deterministic technology matrix and discretely
distributed or integer right hand side vector can be replaced by

Ax ≤ z for at least one vector z ∈ Zp (3.12)

(see for example [Pré90]).
In some special cases, constraint (3.12) can be further replaced by a set of linear constraints
and the introduction of an m-dimensional integer decision vector (see [DPR00]).

Normal probability distribution

Another particular and often made assumption concerning the random variables in a
chance-constraint is to assume their probability distribution to be normal. First of all,
the normal distribution is logarithmic concave, i.e. Theorem 3.1 and Corollary 3.2 can
be applied in case the quasi-concavity of the inner functions gi is assured. Moreover, in
the case of one single chance-constraint P{a(χ)x ≤ β(χ)} ≥ p, we obtain the follow-
ing equivalence in case that the components of the random vector (a(χ)T ,−β(χ)) are
jointly normally distributed with corresponding (n + 1)-dimensional vector of means µ
and covariance matrix C ∈ R(n+1)×(n+1):

P{a(χ)x− β(χ) ≤ 0} ≥ p (3.13)

⇔

(
P{a(χ)x− β(χ)xn+1 ≤ 0} ≥ p ∧ xn+1 = 1

)
(3.14)

⇔

(
F

(
−
∑n+1

i=1 xiµi

(zT C z)
1
2

)
≥ p ∧ xn+1 = 1

)
(3.15)

⇔

(
F−1(p)(zT C z)

1
2 +

n+1∑
i=1

xiµi ≤ 0 ∧ xn+1 = 1

)
(3.16)

where z is de�ned such that zT = (xT , xn+1).
If the means and the covariance matrix are known, the constraint function can thus be
evaluated by using the common value tables for the standard normal distribution.
In the special case of independently normally distributed parameters, the above reformula-
tion is clearly valid with diagonal covariance matrix C having the variances of the random

41

3 The Chance-Constrained Knapsack Problem

parameters on its diagonal. Under the assumption that p ∈ [0.5, 1] (i.e. F−1(p) ≥ 0),
chance-constraint (3.1) can thus be further rewritten as(

||(xT , xn+1)C
1
2 || ≤ − 1

F−1(p)

n+1∑
i=1

xiµ
i ∧ xn+1 = 1

)

The form of this constraint can be generalized as ‖Ax + b‖ ≤ cTx + d. Constraints of
this type are known as Second Order Cone constraint due to the form of the described
feasible region. It follows directly, that in case of independently normally distributed
components of the vector (a(χ)T ,−b(χ)) and for p ≥ 1

2
constraint (3.13) de�nes a convex

set. This result has recently been extended to the more general class of problems where
the random vector (a(χ)T ,−b(χ)) has a logarithmic concave and symmetric distribution
(see [LLS05]). Note that a vector of independent, logarithmic concave random variables
has a logarithmic concave distribution itself (see for example [SDR09]).

3.1.2 Chance-Constrained Knapsack Problems (CCKP)

In this chapter we study a stochastic knapsack problem where, as in the previous chapter,
the item weights are assumed to be unknown at the moment the decision of which items
to put in the knapsack is made. Instead of assuming that a penalty has to be paid in case
of an overweight, we require that the probability that the capacity constraint is respected
equals at least a prescribed probability p ≥ 1

2
. This probability is generally near to 1 and

we assume that in the rest of the cases no penalty occurs.
In this chapter we once more make the assumption that the item weights follow indepen-
dent normal distributions. Consequently, the knapsack chance-constraint

P{
n∑
i=1

χixi ≤ c)} ≥ p (3.17)

de�nes a convex set (see section 3.1.1). Moreover, the random variable that represents
the total weight of the chosen items is normally distributed, as well.
Chance-Constrained Knapsack problems have been studied before:
In [KRT97] the authors �rst consider a problem where the items are so called "on-o�-
items" with deterministic weights and rewards, i.e. they can be modeled as independent
Bernoulli trials. The obtained results are then extended to the case where the items are
always "on" but the weights are random and take either a value hi with a given proba-
bility, and a value lo < hi otherwise.
In [GI99] the authors consider moreover the cases where the item weights are all Poisson
or all exponentially distributed. As in the case of normally distributed random variables,
the Poisson distribution has the advantage that a sum of Poisson random variables is a
Poisson random variable as well. The left hand side of the knapsack chance-constrained
can thus be easily evaluated. Note that the exponential distribution is another example
for a logarithmic concave probability distribution.

42

3.1 Introduction

In [KN08] the authors study the case where the items are assumed to be uniformly dis-
tributed over a certain interval. This is a common assumption in robust optimization
and the authors propose to solve the obtained Chance-Constrained Knapsack problem
via a sequence of robust knapsack problems. Their work has been extended in [Klo09]
where the case of a joint chance-constraint containing a set of general linear constraints
is treated with a similar approach.
In [GLLH10] the authors consider stochastic quadratic knapsack problems with chance-
constraint(s). They �rst study the cases of a (single level) chance-constrained quadratic
knapsack problem and show how, under the assumption of a �nite probability distribu-
tion, the problem can be equivalently reformulated as a quadratic programming problem.
Due to the NP-hardness of the obtained problem, the authors propose linear as well as
semide�nite relaxations. In the second part of the article, a two-stage extension is studied
where the chance-constraint appears in the second-stage. The authors remark, that their
model can be easily extended to the case where an additional chance-constraint appears
in the �rst stage (see also [LLH09] and chapter 4).
In a very recent and to the best of our knowledge still unpublished paper ([GR09]) the
Chance-Constrained Knapsack problem with independent normal distributions is studied
under the aspect of approximability.
A stochastic knapsack problem related to the Chance-Constrained Knapsack problem has
been studied in [MW97]: The authors assume the rewards to be random, while the item
weights and the capacity are deterministic. The objective is to maximize the probability
that the total gain exceeds a given threshold. The authors assume independently nor-
mally distributed rewards. Due to the strict monotonicity and continuity of the CDF of
normal distributed variables, they obtain a deterministic equivalent problem with rational
objective function.
More general combinatorial chance-constrained problems are considered in [Klo10]. In-
stead of one single knapsack chance-constraint, the author considers its problem to contain
a set of separate chance-constraints. Moreover, the linear constraints are not explicitly
required to be knapsack constraints, i.e. both the linear coe�cients of the left hand side
as well as the right hand side might take negative values. The author shows how to ob-
tain a linear description of the feasible set in case of normally distributed coe�cients as
well as without any assumptions on the underlying probability distributions. However,
the number of linear constraints needed to replace the chance-constraint is in general
exponential.

3.1.3 Solving Chance-Constrained Problems

Most of the solution procedures proposed for problems involving a chance-constraint of
the form (3.1) make use of the log- or quasi-concavity of the left hand side constraint
function. They can thus not be used in general. Moreover, most algorithmic studies of
chance-constrained problems assume that the technology matrix is deterministic.
One of the �rst such methods was proposed by Prékopa in [Pré70]. The author assumes
that both the objective as well as the left hand side function of the chance-constraint

43

3 The Chance-Constrained Knapsack Problem

are quasi-concave having a continuous gradient. Keep in mind that the left hand side of
the constraint is the CDF value of the random variable A(χ)x − b(χ) at the point 0. It
is thus continuously di�erentiable with respect to x whenever the underlying probability
distributions are continuous. The author of [Pré70] allows the left hand side function of
the constraint inside the probability measure to be more general than linear. However,
he restricts its study to the case where only the right hand side is random and follows
a continuous joint distribution. The author proposes a method of feasible direction, that
iteratively solves linear programs using the gradients of objective and constraint function
in order to determine a feasible corrective direction. Under the mentioned assumptions
and an additional assumption linked with Slater's condition for convex programming, the
method is shown to converge.
Another common method to solve chance-constrained programming problems with loga-
rithmic concave left hand side function is the so called SUMT (Sequential Unconstrained
Minimization Techniques) method (see [Pré72]). This method has been previously pro-
posed by Fiacco and McCormick to solve more general nonlinear programming problems.
The idea is to use a penalty function (in the case of a logarithmic concave constraint
function this is the logarithm) in order to include the chance-constraint in the objective.
The obtained unconstrained problem has the property that its objective function goes to
in�nity when the left hand side of constraint (3.1) approaches p from above (in case of
a minimization problem). An optimal solution of the obtained unconstrained problem is
thus always feasible for the initial chance-constrained problem. One then approaches the
optimal solution of the initial problem by letting a factor multiplying the penalty function
go to zero. Although there exist several functions that could serve as penalty function,
the choice of the logarithmic function for logarithmic concave constraint functions is evi-
dent, as the obtained problem is convex (in case of a minimization) if the initial objective
function was convex as well.
In [May79] Mayer proposes to use a reduced gradient method in order to solve chance-
constrained problems. The idea of a reduced gradient method is to partition the decision
variables in non-basic and basic variables. While the corrective direction computed for
the non-basic variables aims to decrease the objective (in case of a minimization prob-
lem), the modi�cation of the basic variables is made with respect to the feasibility of the
obtained solution. To determine these directions a linear problem has to be solved at
each iteration. In [May88], Mayer implemented his algorithm under the assumption of
a joint normal probability distribution of the right hand side vector and a deterministic
technology matrix. The computation of the left hand side constraint function and its
gradient is done using a Monte-Carlo sampling method.
In case of discretely distributed random variables, the feasible region de�ned by chance-
constraint (3.1) is clearly not convex. We have seen in subsection 3.1.1 that at least in
case of a discretely distributed or integer valued random right hand side vector b(χ) = χ
and a �xed technology matrix A(χ) = A the set of feasible solutions is �nite. First
approaches to solve these particular problem cases included the idea of enumerating all
these �nitely many points (see [Pré90]). An algorithmic enumeration procedure is given
in [PVB98]. In [DPR00] the authors show how to reformulate a chance-constrained pro-

44

3.1 Introduction

gramming problem with random, integer valued right hand side and r-concave CDF as an
integer programming problem. They propose an iterative cone generation method that
solves a linear relaxation at each step. Lagrangian dual bounds serve to generate new
feasible solutions. The idea to use a B&B algorithm to explore the set of feasible points
of a chance-constrained problem with discretely distributed right hand side vector has
been implemented in [BR02]. Once more linear relaxations are solved to provide upper
bounds.
An algorithm for the case of a random right hand side and deterministic technology matrix
that does not make use of any concavity or continuity assumptions on the underlying dis-
tribution was proposed in [CAAK06]. The only assumptions made are the nonemptiness
and boundedness of the feasible region. The authors propose a branch-reduce-cut algo-
rithm that exploits the monotonicity properties of the chance-constraint (3.1). Feasibility
and optimality cuts based on duality properties reinforce the basic B&B algorithm. The
authors show that in case of discretely distributed random parameters their algorithm
stops after �nitely many iterations with either an optimal solution or by concluding that
the problem is infeasible. In case of continuous distributions, the algorithm may take
in�nitely many steps to converge. In this case it however generates a sequence that con-
verges towards an optimal solution. The authors show that their approach is much more
e�cient than for example reformulating the problem as an integer programming problem
and solving the reformulation using standard solvers.
Recently, a lot of work has been done concerning the approximation of chance-constrained
problems in order to overcome the two main di�culties that are present: The di�culty
of computing the left hand side of the chance-constraint and the nonconvexity of the
feasible region for more general distributions. The aim of these approximations is to re-
place the initial problem by a simpler problem (in terms of computation) whose optimal
solution almost surely respects the chance-constraint. The most straightforward such ap-
proach is the so called scenario approximation method that has been used in [CC04] and
[NS04] to solve chance-constrained problems approximately. The idea is to replace the
chance-constraint by a set of deterministic constraints that are nothing else than the inner
constraint (in the linear case A(χ)x ≤ b(χ)) evaluated at a set of random samples. The
authors of [CC04] show that one needs a random sample that increases with (1 − p)−1

and ln 1
β
to obtain a problem whose optimal solution satis�es the chance-constraint with

at least probability β. In [NS04], it is proven that in the case of normal or uniform dis-
tributions the dependence on (1− p)−1 is only logarithmic.
Apart from the scenario approximation approach, there have also been studies on analytic
approximations of chance-constrained problems. The main advantage of these approxima-
tions is that their quality generally does not depend on the risk level 1− p. It is however
clear that they mostly require precise informations about the underlying probability dis-
tributions. Work in this direction has been published in [NS06] (for random variables
with computable moment-generating function) and [Nem03] (for normally distributed or
centered and bounded random variables).

45

3 The Chance-Constrained Knapsack Problem

3.1.4 Solving Chance-Constrained Knapsack Problems

Concerning the solution of Chance-Constrained Knapsack problems, some procedures
have been proposed before. These are however mostly restricted to special probability
distributions:
In [KN08] the authors assume the item weights to be uniformly distributed over a given
interval. In order to obtain feasible solutions for the initial problem they propose to solve
a set of robust optimization problems whose cardinality is smaller or equal to the number
of items. Their algorithm runs in pseudo-polynomial time. For two special cases they even
prove that the algorithm �nds the optimum of the initial Chance-Constrained Knapsack
problem. In both cases some similarity between the random variables is assumed.
For the case of normally (but not necessarily independently) distributed item weights,
Klopfenstein proposes in a very recent publication ([Klo10]) a deterministic linear combi-
natorial problem that is equivalent to the Chance-Constrained Knapsack problem. Con-
trary to the case of more general distributions studied in this same paper, only a polyno-
mial number of linear constraints is needed to describe the feasible set. The approach of
Klopfenstein is surely the currently most promising method to solve Chance-Constrained
Knapsack problems with normally distributed weights.
Recently, Goyal and Ravi presented in [GR09] a PTAS for the case of independently nor-
mally distributed items. They propose a parametric linear programming reformulation
that is equivalent to a two-dimensional knapsack problem.
Approximation algorithms for Bernoulli, Poisson and exponential distributions have been
given in [KRT97] and [GI99]. For the last two distributions, the authors of [GI99] even
present a PTAS.
In this chapter we once more assume the item weights to be normally distributed. This is
mainly due to the possibility to compare our method with previously proposed methods.
In the conclusion we will, among others, discuss the extension of our approach to more
general distributions.
We propose to solve the Chance-Constrained Knapsack problem with an approach similar
to that used in the previous chapter to solve the Simple Recourse Knapsack problem.
More precisely, we choose a B&B framework and solve continuous relaxations using a
stochastic subgradient algorithm in order to provide upper bounds.
The applied stochastic subgradient algorithm is a so called stochastic Arrow-Hurwicz al-
gorithm that solves the Lagrangian dual problem. More precisely, we reformulate the
chance-constraint as an equivalent expectation-constraint, so that the Lagrangian dual
problem becomes an unconstrained (apart from the 0−1 bounds) stochastic optimization
problem with expected value objective function. When applying a stochastic subgradient
algorithm to this problem, we encounter the di�culty that theoretically a subgradient of
the indicator function over the real interval is used to approximate the gradient of the con-
straint function. However, the indicator function is di�erentiable at nearly all points with
a gradient whose components are all zero. Two solutions to this problem are presented:
On the one hand, we propose to approximate the gradient using �nite di�erences. On the
other hand, we show how the left hand side function of the expectation-constraint can

46

3.2 Mathematical formulation

be reformulated as an expected value function whose inner function is subdi�erentiable.
This reformulation is obtained via integration by parts.
The applied B&B algorithm is mainly the same as in the previous chapter. However, the
plunging step and the ranking of the items have to be adapted to the Chance-Constrained
Knapsack problem.
Continuous Chance-Constrained Knapsack problems have been previously solved using an
SOCP approach. At the end of the chapter, we will thus, on the one hand, directly com-
pare the stochastic subgradient algorithm with the SOCP method (when applied to solve
the continuous Chance-Constrained Knapsack problem). On the other hand, we present
the performances of both algorithms when used as a subroutine of the B&B framework.

3.2 Mathematical formulation

Like in the previous chapter, we are given a knapsack with deterministic weight capacity c
and a set of n items whose weights are unknown at the moment the choice of which items
to put in the knapsack has to be made. Once again we make the assumption that the
item weights are representable by independently, normally distributed random variables
χi with mean µi and standard deviation σi (for i = 1, . . . , n). As for the Simple Recourse
Knapsack problem studied in chapter 2.7, the rewards are assumed to depend linearly on
the item weights, i.e. we only have knowledge of the reward per weight unit ri for each
item i ∈ {1, . . . , n}. Once more all the methods applied and studies made in this chapter
are still valid if the item rewards were independent of the item weights, either deterministic
or random with known mean. Contrary to the previous chapter we restrict the percentage
of cases where the chosen items lead to an overload by introducing a chance-constraint.
In other words, it is assumed that in a small percentage of cases an overload is acceptable
and does not lead to any penalty. The resulting Chance-Constrained Knapsack problem
can be stated as follows:

Chance-Constrained Knapsack problem (CCKP)

max
x∈{0,1}n

E

[
n∑
i=1

riχixi

]
(3.18)

s.t. P{
n∑
i=1

χixi ≤ c)} ≥ p. (3.19)

where p ∈ [0.5, 1] is the prescribed probability. As in chapter 2.7, we will denote the
objective function of problem (3.18) by J , while the function inside the expectation of J
is named j. To simplify formulations, we will in the following sometimes use the de�nition
of the function g(x, χ) :=

∑n
i=1 χixi.

47

3 The Chance-Constrained Knapsack Problem

3.2.1 Properties of the CCKP

Property 1: Note that the choice of p (resp. 1 − p) restricts the percentage of cases
where the capacity constraint is violated by the chosen items, and this independently of
the amount of overweight. This is the main di�erence between the Chance-Constrained
and the Simple Recourse Knapsack problem, as in the case of the latter the choice of
the penalty d has an in�uence on the expected overweight. More precisely, the larger d
is chosen, the smaller the expected overweight will be. However, the probability of an
overweight is not restricted.

Property 2: The chance-constraint (3.19) can be equivalently reformulated as the fol-
lowing expectation-constraint:

E

[
1R+ [c−

n∑
i=1

χixi]

]
≥ p (3.20)

In the following we will mainly work with this equivalent formulation of the chance-
constraint and call the obtained stochastic optimization problem Expectation-Constrained
Knapsack problem (ECKP). In the same manner as we de�ned the functions J and
j of the objective of the CCKP (resp. ECKP), we de�ne the constraint functions
Θ(x) := E [1R+ [c−

∑n
i=1 χixi]] and θ(x, χ) := 1R+ [c −

∑n
i=1 χixi]. Note that, for any

x ∈ Rn, Θ(x) equals the function value of the CDF of the normally distributed variable
X :=

∑n
i=1 χixi when evaluated at the point c.

Property 3: Without loss of generality we can assume that P{χi ≤ c} ≥ p for all
i ∈ {1, . . . , n}: any item that does not satisfy this constraint could be excluded from the
beginning. It follows, that any optimal solution x∗ of the CCKP (3.18) has at least one
nonzero component. Moreover, we have

P{ max
i∈{1...,n}

χi ≤ c} ≥ p⇒ P{n ·
maxi∈{1...,n} χi

n
≤ c} ≥ p

⇒ P{
n∑
j=1

maxi∈{1...,n} χi
n

≤ c} ≥ p

⇒ P{ 1

n

n∑
j=1

χj ≤ c} ≥ p

i.e. any optimal solution of the continuous relaxation of problem (3.18) contains at least
one component xκ with xκ ≥ 1/n. Instead of replacing {0, 1}n by [0, 1]n when relaxing
the CCKP , we are thus allowed to replace it by {x ∈ [0, 1]n | ||x||∞ ≥ 1/n} =: Xcont.
Accordingly, we de�ne the following feasible set for the relaxed CCKP :

Xfeas
cont := {x ∈ Xcont : Θ(x) ≥ p}

48

3.3 Problem Solving Method

Property 4: Remark on the choice of normally distributed weights: The �rst
reason why we assume the weights to be independently normally distributed in this chap-
ter is similar to one of the reasons given in the last chapter, namely that under this
assumption the left hand side of the chance-constraint is easily computable (see Property
2). This is once more used during the solution procedure, this time in order to identify fea-
sible solutions. In addition, we use some of the properties of the normal distribution, for
example that the linear combination of independently normally distributed items is still
normally distributed. The probably most important property that we gain by assuming
the item weights to be independently normally distributed is that constraint (3.19) de�nes
a convex set (see the introduction). Last but not least, the relaxed Chance-Constrained
Knapsack problem with independently normally distributed weights has been solved be-
fore using an SOCP method (see section 3.4.2). We make advantage of this to compare
our solution approach with the previously proposed one.

3.3 Problem Solving Method

The basic idea to solve the CCKP is identical to what we proposed in chapter 2 to
solve the SRKP : Due to its combinatorial nature, we solve the CCKP once more us-
ing a B&B framework. To provide upper bounds, we solve continuous relaxations of the
ECKP using a stochastic subgradient algorithm. More precisely, we apply a so called
Stochastic Arrow-Hurwicz algorithm (hereafter called SAH algorithm) to solve the La-
grangian dual of the ECKP . Consequently, we encounter the problem that a subgradient
of the indicator function 1R+(·) should theoretically be used in order to stochastically
approximate the gradient of the constraint function Θ. This problem could once more
be solved by applying the Approximation by Convolution method presented in chapter
2. Instead, we present two di�erent approaches: The �rst one is a nonbiased estimator
of the subgradient based on integration by parts (hereafter called IP-method). Like the
Approximation by Convolution method, it has been proposed in the thesis of Andrieu
[And04] to solve continuous stochastic optimization problems. The second approach is a
Finite Di�erences estimator (FD-method) presented in [ACVA07]. Like the Approxima-
tion by Convolution method, the FD-method provides a biased estimation of the gradient.

3.3.1 The Stochastic Arrow-Hurwicz (SAH) Algorithm

To solve the relaxed version of the CCKP we use a stochastic subgradient algorithm.
To apply a subgradient method is promising as the objective function is concave and, in
addition, constraint (3.19) de�nes a convex feasible set due to the assumption that the
weights are independently normally distributed. For more information on the theory of

49

3 The Chance-Constrained Knapsack Problem

subdi�erentials and subgradient algorithms we refer the reader to the books by Hiriart-
Urruty and Lemaréchal [HUL93a] and [HUL93b].
We propose to solve the CCKP with a Stochastic Arrow-Hurwicz algorithm (see Algo-
rithm 3.3.1). More precisely, we apply this algorithm to solve the equivalent ECKP . The
algorithm introduces a Lagrange multiplier λ to handle the expectation-constraint (see
also [CC95]), i.e. the idea is to solve the following Lagrangian dual of the ECKP :

Lagrangian dual of the ECKP

min
λ≥0

max
x∈Xcont

E[
n∑
i=1

riχixi]− λ ·

(
p− E

[
1R+ [c−

n∑
i=1

χixi]

])
(3.21)

The SAH algorithm is a stochastic subgradient algorithm, i.e. it uses subgradients

Stochastic Arrow-Hurwicz Algorithm

1. Choose x0 ∈ Xfeas
cont and λ

0 ∈ [0,∞) as well as two σ-sequences (εk)k∈N∗ and (ρk)k∈N∗ .
Set k = 1.

2. Given xk−1 and λk−1, draw χk following its normal distribution, compute rk ∈
∂xj(x

k−1, χk), τ k = ∇xθ(x
k−1, χk) and update x and λ as follows:

xk = xk−1 + εk(rk + λk−1(τ k))

λk = λk−1 + ρk(p− θ(xk, χk))

3. For all h = 1, . . . , n: If xkh > 1 set xkh = 1 and if xkh < 0 set xkh = 0.
4. If xkh < 1/n for all h = 1, . . . , n, set xkh = 1/n for one h ∈ {1, . . . , n}.
5. If λk < 0 set λk = 0.
6. If k = kmax: STOP. Else: Set k = k + 1. Go to step 2.

Algorithm 3.3.1

of the functions inside the expectations, instead of subgradients of the expected value
functions. In fact, if we denote the Lagrangian dual function of the ECKP by L(x, λ) =
E[l(x, λ, χ)], it follows that (rk + λk−1(τ k)) ∈ ∂xl(xk−1, λk−1, χk) (where ∂xl(x, χ) denotes
the subdi�erential of l with respect to x at the point (x, χ)) while (p − θ(xk, χk)) =
∂
∂λ
l(xk, λk−1, χk) (cf. Algorithm 3.3.1). Note again that in the deterministic form of the

Arrow-Hurwicz algorithm we would have to use the subgradients of the Lagrangian itself,
i.e. the subgradient of an expected value function. By drawing independent samples of the
random variables at each iteration of the algorithm, the expectations of the subgradients
are approximated.
At each iteration of algorithm 3.3.1 a subgradient of θ with respect to x at the point
(xk−1, χk) is used to approximate the gradient of Θ. However, in the case of the ECKP
as stated in section 3.2, θ is mainly the indicator function over the real interval. This
entails two problems: First of all θ has points of discontinuity. The second, more important

50

3.3 Problem Solving Method

problem is that at the remaining points, where θ is di�erentiable, all components of its
gradient are zero. It is thus not clear how to approximate the gradient of Θ by sampling
when using the function θ (see also [ACVA07]). In the following two subsections, we
will present two ways to handle this inconvenience: either by approximation using �nite
di�erences or by reformulation of the constraint function Θ using integration by parts.
A convergence analysis of the SAH algorithm from both a theoretical and a practical
point of view is given in section 3.4.

The FD-Method

In this approach, the hth component of the gradient of θ is approximated by the corre-
sponding di�erence quotient

θ(x+ δνh, χ)− θ(x− δνh, χ)

2δ

where δ > 0 and νh ∈ {0, 1}n such that νhh = 1 and νhi = 0 for i 6= h. This leads to the
following approximation of the hth component of the gradient of θ:

(∇x(θδ)(x, χ))h =
1R+(c− g(x+ δνh, χ))− 1R+(c− g(x− δνh, χ))

2δ

The IP-Method

The idea of the IP-method is the following: We use integration by parts to reformu-
late E[θ(x, χ)] which gives us an expected value function E[θ̃(x, χ)] s.t. E[θ̃(x, χ)] =

E[θ(x, χ)] = Θ(x) for all x ∈ Xfeas
cont . θ̃ is subdi�erentiable and the idea is to use a

subgradient of θ̃ in the SAH algorithm. This idea has been presented in the thesis of An-
drieu in order to solve expectation-constrained optimization problems (see Theorem 5.5
in [And04]). We state and prove their theorem for the case of the ECKP with normally
distributed weights. The variables and functions used in this proposition are de�ned as
in section 3.2:

Proposition 3.4. Let YR+(·) be a primitive of 1R+(·) and let χ be a random vector whose
components χi are independently normally distributed with mean µi and standard deviation
σi. Let x ∈ Xcont and let κ = κ(x) ∈ {1, . . . , n} be de�ned such that xκ = ||x||∞ ≥ 1/n.
Then, using integration by parts, we get

Θ(x) = E

[
−YR+(c− g(x, χ))

(χκ − µκ)
xκσ2

κ

]
Proof. Let ϕ denote the density function of the random vector χ = (χ1, . . . , χn) and de�ne

u′χκ(x, χ) := −1R+(c− g(x, χ))xκ and

v(x, χ) := −ϕ(χ)

xκ

51

3 The Chance-Constrained Knapsack Problem

It follows

Θ(x) =

∞∫
−∞

1R+(c− g(x, χ))ϕ(χ) dχ =

∞∫
−∞

u′χκ(x, χ)v(x, χ) dχ

Integration by parts over χκ leads to

Θ(x) =
[
u(x, χ)v(x, χ)

]∞
−∞ −

∞∫
−∞

u(x, χ)v′χκ(x, χ) dχ

= −
∞∫

−∞

u(x, χ)v′χκ(x, χ) dχ = −
∞∫

−∞

YR+(c− g(x, χ))v′χκ(x, χ) dχ

In our case the random variables are independently, normally distributed. With ϕi

being the density function of χi we get

ϕ′χκ(χ) =
∏
i 6=κ

ϕi(χi) · (ϕκ)′χκ(χκ) =
∏
i 6=κ

ϕi(χi) ·
(
−(χκ − µκ)

σ2
κ

ϕκ(χκ)

)
= −(χκ − µκ)

σ2
κ

ϕ(χ)

It follows

v′χκ(x, χ) =
∂

∂χκ

(
−ϕ(χ)

xκ

)
=

(χκ − µκ)
xκσ2

κ

ϕ(χ)

and therefore

Θ(x) = −
∞∫

−∞

YR+(c− g(x, χ))
(χκ − µκ)
xκσ2

κ

ϕ(χ) dχ

= E[−YR+(c− g(x, χ))
(χκ − µκ)
xκσ2

κ

]

Based on this proposition we can replace the left hand side function Θ of the expectation-
constraint (3.20) by the function

E

[
−YR+(c− g(x, χ))

(χκ − µκ)
xκσ2

κ

]
=: E[θ̃(x, χ)] (3.22)

52

3.4 Convergence of the SAH Algorithm

θ̃ is subdi�erentiable with respect to x: First of all note that we can choose YR+(x) =

1R+(x) · x = [x]+. For a given realization χ̂ of χ θ̃ is thus di�erentiable at all points x
with c 6= g(x, χ̂) with gradient

∇xθ̃(x, χ) = 1R+(c− g(x, χ))
(χκ − µκ)
xκσ2

κ

χ+ [c− g(x, χ)]+
(χκ − µκ)
x2
κσ

2
κ

νκ

where again νκ ∈ {0, 1}n is de�ned such that νκκ = 1 and νκi = 0 for i 6= κ. For c = g(x, χ̂)
a possible choice for the subgradient in the SAH is On.

3.3.2 The Branch-and-Bound Framework

The B&B algorithm chosen to solve the (combinatorial) CCKP is basically the same as
Algorithm 2.3.2 presented in chapter 2. In the case of the CCKP , it is however more
complicated to introduce useful dominance relationships than in the case of the SRKP .
This is due to the fact that modifying σ̂ :=

√∑n
i=1 σ

2
i x

2
i cannot be interpreted as easily.

The only very special case where one can say that item i dominates item k is the following:

1. µi = µk, σi = σk, ri ≥ rk

Most of the time, the items are thus simply ranked by their value of ri. This ranking
gave good results in the numerical tests (compared e.g. with the ranking used for the
SRKP or a randomized ranking) but can surely be improved.
Concerning the B&B algorithm itself, we have to modify step 2 of Algorithm 2.3.2 in
order to respect the chance-constraint: Instead of testing if the next item increases the
objective function (which is the case for each item at every time), we check whether the
chance-constraint is still satis�ed after adding this item. More precisely, we calculate
F (

c−
∑n
i=1 µixi√∑n
i=1 σ

2
i x

2
i

), i.e. the CDF of the random variable X =
∑n

i=1 χixi at the point c.

Then, depending on whether the obtained value is greater or smaller than the prescribed
probability p, we accept or reject the item.

3.4 Convergence of the SAH Algorithm

3.4.1 Theoretical versus practical convergence

Culioli and Cohen proved in [CC95] a theorem that guarantees the weak convergence of
the SAH algorithm towards a saddle point (x∗, λ∗) of the associated Lagrangian:

Theorem 3.5 (Culioli, Cohen (1995)). Suppose the following assumptions to be satis�ed:

H1 θ(·, χ) is subdi�erentiable with subgradient uniformly bounded with respect to χ.

H2 The associated Lagrangian admits a saddle point (x∗, λ∗).

H3 J is strictly concave.

53

3 The Chance-Constrained Knapsack Problem

H4 ∀χ ∈ Rn, θ(·, χ) is locally Lipschitz continuous.

H5 There exist c1, c2 > 0 such that
∀χ ∈ Rn, ∀x, y ∈ Xcont ||θ(x, χ)− θ(y, χ)|| ≤ c1||x− y||+ c2.

H6 Θ(x) is Lipschitz continuous and concave.

H7 There exist α, β > 0 such that
∀χ ∈ Rn, ∀x ∈ Xcont ||∇xj(x, χ)|| ≤ α||x− x∗||+ β.

H8 εk/ρk is monotone in the large sens.

H9 There exist γ, δ > 0 such that
∀x ∈ Xcont E[θ(x, χ)−Θ(x)]2 < γ||x− x∗||2 + δ.

Then, the sequence (xk, λk) is bounded and xk converges weakly towards an optimal solu-
tion of the CCKP (3.18).

Unfortunately, in our case not all hypotheses are satis�ed. We will however see in the
next section that, after solving some technical problems, the SAH algorithm converges
on all tested instances towards a point x̃ ∈ Xcont such that J(x̃) ≈ J(x∗). We thus think
it worth discussing the above hypotheses one by one in the case of the CCKP (resp.
ECKP), with an emphasis on the question of the practical solution of the problem. A
concluding remark at the end of this subsection summarizes the discussion.

H1: In case of the ECKP , θ(x, χ) = 1R+(c − g(x, χ)) is not subdi�erentiable in the
common sense (θ is neither convex nor continuous). But, as presented in subsection 3.3.1,
it is possible to either approximate the gradient (FD-method) or to replace θ(x, χ) by a
subdi�erentiable function θ̃(x, χ) such that E[θ̃(x, χ)] = E[θ(x, χ)] (IP-method).
The FD-method gives us an approximated gradient that is either 1/(2 · δ) (where δ > 0
is a constant) or 0. It is thus trivially bounded uniformly with respect to χ.
Using the IP-method a subgradient of the obtained function θ̃ at point (x, χ) is given by
the expression:

1R+(c− g(x, χ))
(χκ − µκ)
xκσ2

κ

χ+ [c− g(x, χ)]+
(χκ − µκ)
x2
κσ

2
κ

νκ

Whenever 1R+(c−g(x, χ)) = 1, one observes that this subgradient behaves as a quadratic
expression of χ. It is therefore not possible to bound it uniformly with respect to χ.
However, in most real life applications, the ratio variance/mean of the unknown param-
eters is typically small. It follows, that the corresponding density functions tend to zero
very fast which makes the occurrence of exceptionally small or high valued realizations
improbable. Although in a theoretical analysis these cases cannot be neglected and there-
fore no uniform upper or lower bound stated, they do not play any role from a numerical
point of view.

54

3.4 Convergence of the SAH Algorithm

H2: We conjecture that hypotheses H2 is valid. Nonetheless, we remark that H2 is
connected to H3, i.e. the question of stability of the Lagrangian, which, in our case,
cannot be guaranteed. Yet keep in mind that we are not looking for an optimal solution
vector x, but for the optimal value of the objective function.

H3: Unfortunately, in our case J is not strictly concave, as

J(x) = E

[
n∑
i=1

riχixi

]
=

n∑
i=1

riµixi = (r1µ1, . . . , rnµn)x

i.e. J is a linear map. An idea to overcome this problem is to use an Augmented
Lagrangian. The problem is, however, that the use of a stochastic subgradient algorithm
is in general not adapted to directly solve the Augmented Lagrangian problem (see e.g.
[Car10b] and the next subsection on the convexi�cation of the constraint function). Even if
we cannot for instance prove it, we however think that the strict concavity of the objective
function J is insigni�cant as long as the constraint function and thus the Lagrangian dual
are strictly concave.

H4: Clearly, for a �x χ ∈ Rn, θ(·, χ) is not locally Lipschitz continuous as it is not
even continuous at all those points x with c − g(x, χ) = 0. However, in the case of the
IP-method, θ is replaced by a function θ̃ which, in turn, is locally Lipschitz continuous at
all points x ∈ Xfeas

cont .

H5: Choose c2 = 1. It follows ∀χ ∈ Rn, ∀x, y ∈ Xcont ||θ(x, χ)− θ(y, χ)|| ≤ c2.

H6: As we assume the item weights to be normally distributed, Θ(x) = P{g(x, χ) ≤ c}
is Lipschitz continuous, as

Θ(x) = F (
c−

∑n
i=1 µixi√∑n
i=1 σ

2
i x

2
i

)

It is easy to see that Θ is continuous on Xcont . In addition, we have 0 ≤ Θ(x) ≤ 1 for all
x ∈ Rn and as Xcont is a compact set, it follows that Θ is Lipschitz continuous on Xcont.
The question of concavity of Θ has already been discussed in the introduction. In fact, Θ
is not concave but logarithmic concave. In �gure 3.4.1 we show the plot of the constraint
function for a "realistic" two-dimensional example. Here "realistic" is used in the sens
that the variances are relatively small compared to the mean and that the capacity is large
enough to allow for at least one item to be packed. As parameters we have chosen the
weight means 212 and 242 and variances 47 and 20, respectively, and a knapsack capacity
of 270.
The �gure seems to indicate that there exists a closed subset of the unit square such that Θ
is concave on this subset. To verify this �rst impression, we compute the eigenvalues of the
Hessian matrix H(x̃) of the function Θ at a point x̃ in�nitesimal close to the bottom of the
set Xcont (in the sense where xi = 0 for all i = 1, . . . , n) and we �nd them all nonpositive.

55

3 The Chance-Constrained Knapsack Problem

Figure 3.4.1: Constraint function Θ of the CCKP in 2-dimensional case with realistic
parameters

Moreover, when computing the components of the Hessian matrix in the limit (0, 0) one
obtains, as expected, zero. According to the fact that the determinant of the Hessian
matrix detH(x) is a continuous function of x, it follows that there exists a topologically
connected and closed component C ⊆ Xcont with x̃ ∈ C such that detH(x) ≤ 0 for all
x ∈ C. For pC := min{Θ(x)|x ∈ C}, it thus follows that Θ is concave on the feasible set
of the corresponding relaxed CCKP with prescribed probability pC .
To conclude on the above observations, we formulate the following conjecture. To prove
it, it is of course su�cient to show that the components of the Hessian matrix tend to
zero (or any other nonpositive value) at the limit point On with nonnegative values close
to the limit point.

Conjecture 3.6. Let χ1, ..., χn be a given set of independently normally distributed ran-
dom variables with strictly positive means and let c > 0 be a given deterministic capacity.
Then there exists p = p(χ1, ..., χn, c) with 0.5 ≤ p < 1 such that Θ(x) is concave on the
set {x ∈ Xcont|Θ(x) ≥ p}.

In other words, we conjecture that for a given (realistic) instance of the CCKP there
exists a p such that the corresponding Lagrangian dual function is concave over the feasible
region Xfeas

cont of the relaxed CCKP . Note, however, that the feasible region of the inner
maximization of the Lagrangian dual problem is Xcont ⊃ Xfeas

cont . Nevertheless practical
convergence of the algorithm can be assured: On the one hand, one can ensure that the
infeasible solutions produced by the SAH algorithm are never very far from the feasible
region by choosing the step size for x accordingly. On the other hand, practical conver-
gence can be obtained by choosing the step size for λ such that shortly after producing
an infeasible solution one re-obtains a feasible one.

H7: j is linear in each component of x. H7 is thus satis�ed.

H8: Condition H8 is satis�ed for all sequences of type const/k with const > 0.

56

3.4 Convergence of the SAH Algorithm

H9: We have

θ(x, χ) ≤ 1 and Θ(x) = P{g(x, χ) ≤ c} ≥ 0

⇒ θ(x, χ)−Θ(x) ≤ 1⇒ E[θ(x, χ)−Θ(x)]2 ≤ 1

It follows that condition H9 is satis�ed for all δ > 1.

Convexi�cation of the constraint function

As the left hand side function of the knapsack chance-constraint (3.19) is logarithmic
concave (see Theorem 3.1), applying a logarithm makes it a concave, and even strictly
concave, function. Therefore, an idea to overcome the non-concavity of Θ is to solve the
following problem instead of problem (3.18):

CCKP with concave constraint function

max
x∈{0,1}n

E

[
n∑
i=1

riχixi

]
(3.23)

s.t. log

(
P{

n∑
i=1

χixi ≤ c)}

)
≥ log(p). (3.24)

After reformulation of the probability as an expectation and introducing a Lagrange
multiplier λ, we obtain the following Lagrangian dual problem:

Lagrangian dual of the CCKP with concave constraint function

min
λ≥0

max
x∈Xcont

E[
n∑
i=1

riχixi]− λ ·

(
log p− log

(
E

[
1R+ [c−

n∑
i=1

χixi]

]))
(3.25)

The problem is, that the obtained Lagrangian dual function is not of the form L(x, λ) =
E[l(x, λ, χ)] anymore, as clearly

log

(
E

[
1R+ [c−

n∑
i=1

χixi]

])
6= E

[
log

(
1R+ [c−

n∑
i=1

χixi]

)]

due to the simple fact that log (1R+ [c−
∑n

i=1 χixi]) is not de�ned for 1R+ [c−
∑n

i=1 χixi] =
0, which is the case whenever c ≤

∑n
i=1 χixi. It is thus not evident how to solve problem

(3.25) using a stochastic subgradient algorithm (see [Car10b] where a similar problem is
discussed for the Augmented Lagrangian).

57

3 The Chance-Constrained Knapsack Problem

Conclusion on the theoretical analysis of the convergence of the SAH Algorithm

Although some of the conditions of Theorem 3.5 by Culioli and Cohen are not satis�ed
in the case of the CCKP with independently normally distributed weights, the above
discussion leads us to believe that these conditions are not mandatory in practice or can
at least be bypassed by an adapted application of the SAH algorithm. More precisely,
we think that some conditions might be weakened in the above theorem such as the strict
concavity of the objective function. Other conditions might be adapted to the case of the
CCKP (or as well weakened) such as the requirement of subdi�erentiability and local
Lipschitz continuity of the function θ.
The concavity issue of the Lagrangian (resp. the constraint function) clearly cannot be
bypassed if one wants to guarantee the convergence of the algorithm. We conjecture,
however, that at least for large values of p the Lagrangian is concave over the feasible
region of the CCKP . By choosing the right step size, it might be possible to keep the
algorithm in this region and thus to achieve convergence. This is what has been con�rmed
by the numerical tests presented in the next section. Although we have remarked that
the right choice of the step size signi�cantly a�ects the convergence of the algorithm, it
is nevertheless possible to choose a σ-sequence adapted for a whole set of instances.
Beneath the issue of concavity, the question of the existence of a saddle point of the
Lagrangian is still open. While the former condition is clearly not satis�ed on the whole
feasible region of the Lagrangian dual problem, we conjecture that the second condition
is ful�lled.

3.4.2 Numerical convergence tests

All numerical tests have been carried out on an Intel PC with 2GB RAM. The SAH
algorithm as well as the B&B framework have been implemented in C language. The
random numbers needed for the runs of the SAH algorithm where generated in advance
using the gsl C-library and stored in a batch.

Convergence of the SAH Algorithm involving the FD-Method

Let us �rst study the numerical convergence of the SAH algorithm when approximating
the gradient of θ using the FD-method (see Figure 3.4.2 (bold curve)). The algorithm
converges fast and only slight variances can be seen after around 300 iterations. We there-
fore �x the maximum number of iterations for the SAH algorithm at 500 (for numerical
results see subsection 3.4.2 and Table 3.1).

Need of problem reformulation when using the SAH Algorithm involving

IP-Method

During our �rst numerical tests we remarked that the SAH algorithm involving the IP-
method diverges once the produced solution xk is infeasible, i.e. once c − g(xk, χk) < 0.
The reason is quite obvious:

58

3.4 Convergence of the SAH Algorithm

0 500 1000 1500 2000 2500 3000 3500 4000
3000

3500

4000

4500

5000

5500

6000

6500

7000

Number of iterations of the stochastic gradient algorithm

O
b
je
c
ti
v
e
 f
u
n
c
ti
o
n

0 500 1000 1500 2000 2500 3000 3500 4000
4400

4500

4600

4700

4800

4900

5000

Number of iterations of the stochastic gradient algorithm

L
a
g
ra
n
g
ia
n

Figure 3.4.2: Convergence of the SAH algorithm solving the continuous ECKP : FD-
method (bold curve) versus initial IP-method (upper �gure) and IP-method
with modi�ed choice of xkappa (lower �gure)

The expectation-constraint states

E [1R+(c− g(x, χ))] ≥ p⇔ p− E [1R+(c− g(x, χ))] ≤ 0

We thus get the Lagrangian

L(x, λ) = E

[
n∑
i=1

riχixi

]
− λ (p− E [1R+(c− g(x, χ))])

Using the IP-method, we rewrite this Lagrangian as follows:

L̃(x, λ) = E[
n∑
i=1

riχixi]− λ
(
p+ E[YR+(c− g(x, χ))

(χκ − µκ)
xκσ2

κ

]

)
(3.26)

Let us denote l̃ the function inside the expectation of the Lagrangian (3.26), i.e.

l̃(x, λ, χ) =
n∑
i=1

riχixi − λ
(
p+YR+(c− g(x, χ))

(χκ − µκ)
xκσ2

κ

)
It follows (for a point (x, χ) with c 6= g(x, χ))(
∇xl̃(x, λ, χ)

)
h

= rhχh + λ

(
1R+(c− g(x, χ))

(χκ − µκ)
xκσ2

κ

(
χh +

(c− g(x, χ))

xκ
νκh

))

59

3 The Chance-Constrained Knapsack Problem

Remark that the term that multiplies λ is zero whenever the capacity constraint is not
satis�ed (i.e. when c < g(x, χ)). In these cases all of the components of the current xk are
incremented (as all the components of (r1χ1, . . . , rnχn)T are positive) although at least
one component should be decreased in order to better �t the capacity.
Of course, the expectation-constraint can be equivalently reformulated as

E [1R+(g(x, χ)− c)] ≤ 1− p⇔ E [1R+(g(x, χ)− c)]− (1− p) ≤ 0

In this case the h-th component of the gradient of l̃ for a point (x, χ) with g(x, χ) 6= c is
given by(
∇xl̃(x, λ, χ)

)
h

= rhχh − λ
(
1R+(g(x, χ)− c)(χκ − µκ)

xκσ2
κ

(
χh −

(g(x, χ)− c)
xκ

νκh

))
Here the term that multiplies λ is zero whenever the capacity constraint is satis�ed.
In this case the components of xk are incremented by the components of the positive
vector (r1χ

k
1, . . . , rnχ

k
n)T (multiplied by the corresponding factor σk). When the capacity

constraint is not satis�ed the term with coe�cient λ is subtracted from this vector in order
to correct xk. For h 6= κ, this term is positive whenever (χkκ−µκ) > 0 (see also subsection
3.4.2) and the Lagrange multiplier λ is now playing its assigned role of a penalty factor.

Convergence of the SAH Algorithm involving the IP-Method

When studying the behavior of the SAH algorithm involving the IP-method, we remark
that even after the reformulation described in subsection 3.4.2 the IP-method is much
less robust than the FD-method (see upper graphic of Figure 3.4.2). In this case, "ro-
bust" means that when using the FD-method the SAH algorithm reacts much less on
the variations of the drawn samples (see also graphic 3.4.3 where for a �x decision vector
subgradients are computed for 500 di�erent samples of the random variables). This higher
variance causes a slower convergence of the average IP-subgradient towards the expected
subgradient (Figure 3.4.4) (both Figure 3.4.3 and Figure 3.4.4 show one component of the
multidimensional subgradient). This might be one explanation for the higher �uctuations
in the objective function values produced by the SAH algorithm involving the IP-method
(upper graphic of Figure 3.4.2). Unfortunately, these high �uctuations provoke a slower
convergence towards the optimum compared with the FD-method. As our stopping cri-
terion is a �xed maximum number of iterations, it naturally follows that the produced
solutions are, in general, less good than in the case of the FD-method.

Modi�ed choice of xκ

Let us once more study the h-th component of the gradient of the Lagrangian function
at a point (x, χ) with g(x, χ) 6= c obtained by the IP-method after reformulation:(
∇xl̃(x, λ, χ)

)
h

= rhχh − λ
(
1R+(g(x, χ)− c)(χκ − µκ)

xκσ2
κ

(
χh −

(g(x, χ)− c)
xκ

νκh

))

60

3.4 Convergence of the SAH Algorithm

0 50 100 150 200 250 300 350 400 450 500
-100

-80

-60

-40

-20

0

20

40

60

80

100

G
ra

d
ie

n
t
F

D

0 50 100 150 200 250 300 350 400 450 500
-100

-80

-60

-40

-20

0

20

40

60

80

100

G
ra

d
ie

n
t
IP

Figure 3.4.3: Calculating a subgradient for 500 samples of χ: FD-method (upper �gure)
versus initial IP-method (lower �gure)

0 50 100 150 200 250 300 350 400 450 500
-10

-8

-6

-4

-2

0

2

4

6

8

10

G
ra

d
ie

n
t

Figure 3.4.4: Calculating an expected subgradient by sampling: FD-method (black) ver-
sus initial IP-method (gray)

61

3 The Chance-Constrained Knapsack Problem

In case of an overload, we expect this gradient to be negative for some indexes h in order
to decrease the total weight of the knapsack. However, for h 6= κ and 1R+(g(x, χ)−c) = 1,
the term that multiplies λ is positive at iteration k if and only if (χkκ − µκ) > 0 which
is the case with a probability of 50%. In the other 50% of cases, the gradient is strictly
positive and all components of x with index di�erent from κ are incremented despite the
overload. Due to this observation we propose the following improved choice of the index
κ: Instead of just choosing κ in the kth iteration such that xkκ = ||xk||∞ (see Proposition
3.4), we choose κ as follows:

κ = arg max
i=1,...,n

{xki |xki ≥ 1/n ∧ (χki − µi) > 0}

If {xki |xki ≥ 1/n ∧ (χki −µi) > 0} = ∅, we choose κ as before, i.e. such that xkκ = ||xk||∞ ≥
1/n.
With this modi�cation we were able to signi�cantly improve the convergence of the SAH
algorithm involving the IP-method (see lower graphic of Figure 3.4.2) and could �x the
maximum number of iterations to 1000.

Optimum, CPU-time and gap - Comparison with an SOCP approach

Arrow-Hurwicz &
FD-method

Arrow-Hurwicz &
IP-method

MOSEK

n CPU
(msec)

Gap CPU
(msec)

Gap CPU
(msec)

C./B. 1 0.03% 2 0.03% 25

15 1 0.02% 2 0.02% 22
20 1 0.02% 3 0.02% 22
30 1 0.02% 4 0.02% 22
50 3 0.01% 6 0.02% 24
75 4 0.02% 9 0.02% 26
100 5 <0.01% 12 0.01% 28
150 8 <0.01% 17 0.01% 31
250 13 0.01% 28 0.01% 37
500 25 0.01% 56 0.01% 52
1000 51 <0.01% 111 0.01% 89

Table 3.1: Numerical results for the continuous ECKP

We tested the SAH algorithm on the instance used in [CB98] (called C./B.) as well
as on 50 randomly created instances for each dimension. The data given in the following
tables are average values over these instances. As remarked at the end of section 3.2, the
choice of normally distributed weights implies that theoretically weights can take negative

62

3.5 Solving the (combinatorial) CCKP - Numerical Results

values. The test instances were therefore generated in a way that with high probability
the variance/mean ratio is below 1/4 (see [CB98] or chapter 2 for details concerning the
instance generation). This implies a very low probability for the realization of negative
weights which has been con�rmed during our numerical tests: Although a high number
of scenarios had to be generated (either 500 or 1000 for each run of the SAH algorithm),
we encountered no negative weight realizations.
In Table 3.1, the numerical results of the SAH algorithm involving the FD- or IP-method
are compared with those using an SOCP solver: The chance-constraint of the CCKP
with independently, normally distributed weights can be equivalently reformulated as a
deterministic equivalent SOCP constraint (SOCP=Second Order Cone Programming) as
shown in subsection 3.1.1 (see for example [LVBL98]). Moreover, the bounding constraints
0 ≤ xi ≤ 1 (i = 1, ..., n) can be replaced by two SOCP constraints:

0 ≤ xi ≤ 1⇔ ‖Aix‖ ≤ xi ∧ ‖Aix‖ ≤ 1

where Ai ∈ R1×n, Ai[1, k] = 0 ∀k 6= i and Ai[1, i] = 1. To solve the obtained SOCP
problem we used the SOCP solver by MOSEK in C-programming language that applies
an interior point method ([MOS10]). The gaps given in the following tables are the rel-
ative gaps between the solution produced by the MOSEK software and the approximate
solution obtained when using the stochastic subgradient algorithm.
First of all, we remark that the best solution values given by the SAH algorithm involving
the FD-method are comparable to those produced by the IP-method. Small variances in
favor of one algorithm or the other can be explained by the di�culty presented by the
choice of the two σ-sequences for the SAH algorithm. Choosing the right parametrization
for these sequences has an important in�uence on the convergence of the algorithm and
the best found solution (see subsection 3.4.1).
In terms of running time, both methods outperform the SOCP algorithm for small and
medium size instances. For higher dimensional problems, this is still true for the FD-
method. However, the SAH algorithm involving the IP-method needs approximately
twice the time than when using the FD-method. This is of course due to the total num-
ber of iterations which we were able to �x at 500 when using the FD-method, while
we need 1000 iterations with the IP-method in order to obtain equally good solutions.
For higher dimensional instances the MOSEK interior point method needs therefore less
CPU-time than the SAH algorithm involving the IP-method.

3.5 Solving the (combinatorial) CCKP - Numerical

Results

The combinatorial problem has been solved using the B&B algorithm described in section
3.3.2. The algorithm has been tested on the instances previously used for the tests of the
SAH algorithm.

63

3 The Chance-Constrained Knapsack Problem

We once more stored the random numbers needed for the runs of the SAH in a batch.
As the total number of runs during the B&B algorithm is unknown and the number of
random numbers needed for all those runs is generally very high, we only stored random
numbers for a limited number of runs. Before starting a run of the SAH we then chose
randomly one of the instances of random numbers. Remark that, as the runs of the SAH
are independent, one stored instance of random numbers would theoretically be su�cient.
When studying Table 3.2 one might �rst of all remark that the B&B algorithm that uses
the SOCP program to obtain upper bounds considers more nodes than when using an
SAH algorithm. This is not due to a better choice of the upper bounds in the latter
method as in both algorithms the upper bounds are supposed to be the same (i.e. the
optima of the corresponding relaxed problems). However, as the best solution found
by the approximate SAH algorithm might be slightly smaller than the optimal solution
value of the relaxed problem, more branches are pruned than with the primal-dual SOCP
algorithm. Of course, this could theoretically also cause the pruning of a subtree that
contains the optimal solution.
Similarly, the SAH algorithm involving the IP-method considers on average more nodes
than when using the FD-method. This implies that the solutions values of the relaxed
subproblems produced by the FD-method are less good than those obtained when using
the IP-method. As both methods perform equally on the relaxed overall problems (see
subsection 3.4.2), we can thus draw the conclusion that the FD-method is less robust
in the following sense: Instead of choosing particular σ-sequences for each instance or
even each subproblem that has to be solved during the B&B algorithm, we �xed one
parametrization for each dimension. However, the subproblems solved during the B&B
algorithm are mostly lower dimensional problems and the SAH algorithm using the �xed
σ-sequences might therefore perform less good on these subproblems. This seems to be
especially the case when using the FD-method.
Anyway, if we only allow an average computing time of up to 1h, the SOCP algorithm
can only be used up to a dimension of 50. In contrary, when using the FD-method and
allowing 500 iterations in the SAH algorithm, we are able to solve problems up to a
dimension of 250 within an average CPU-time of 1h.

3.6 Concluding remarks and future work

In this chapter we proposed a method to solve the Chance-Constrained Knapsack prob-
lem with independently, normally distributed weights. As framework we once more chose
a B&B algorithm and to obtain upper bounds we proposed to solve the corresponding
continuous relaxations of the problem. This, in turn, was done by applying a stochastic
subgradient algorithm. As, contrary to the �rst chapter, the treated problem contains a
constraint other than the 0 − 1 bounds, we used a particular stochastic subgradient al-
gorithm known under the name of Stochastic Arrow-Hurwicz algorithm. The idea of this
approach is to introduce a Lagrange multiplier in order to handle the chance-constraint.
The so obtained unconstrained Lagrangian dual problem with expected value objective

64

3.6 Concluding remarks and future work

Arrow-Hurwicz & FD-method

n Optimum considered
nodes

CPU-time
(sec)

B-and-B

Gap

C./B. 4595 122 0.09 0 %

15 4840 31 0.02 0 %
20 6634 69 0.07 0 %
30 10272 271 0.35 0 %
50 16975 3341 6.43 0 %
75 25548 6187 18.43 0 %
100 33895 12093 45.87 -
150 50672 37076 244.11 -
250 85189 65890 623.53 -
500 * * * *

Arrow-Hurwicz & IP-method

n Optimum considered
nodes

CPU-time
(sec)

B-and-B

Gap

C./B. 4595 122 0.21 0 %

15 4840 34 0.06 0 %
20 6634 63 0.13 0 %
30 10272 436 1.22 0 %
50 16975 7051 31.34 0 %
75 25548 23911 161.47 0 %
100 33894 98479 1049.18 -
150 * * * *

MOSEK

n Optimum considered
nodes

CPU-time
(sec)

B-and-B

C./B. 4595 122 0.406

15 4840 34 0.082
20 6634 66 0.236
30 10272 350 1.801
50 16975 7406 70.914
75 25548 62175 1535.520
100 * * *

* CPU-time exceeds 1h

Table 3.2: Numerical results for the (combinatorial) ECKP

65

3 The Chance-Constrained Knapsack Problem

function can then be solved by a stochastic subgradient method. The function inside this
expectation is, however, not subdi�erentiable (it is not even convex) as it is the sum of
a linear and an indicator function. While the Approximation by Convolution method
presented in the previous chapter would have been a possible choice to overcome this
problem, we proposed two additional methods, one based on �nite di�erences, one on
integration by parts.
Due to the fact that the constraint function is only logarithmic concave (and not con-
cave) on the feasible region of the Lagrangian problem, the convergence of the algorithm
to the saddle point of the Lagrangian dual function cannot be guaranteed. Numerical
results however showed that a careful choice of the initial solution and adapted step sizes
lead nevertheless to a convergence of the algorithm on the tested instances. Additional
convergence issues of the stochastic subgradient algorithm involving the IP-method were
eliminated by choosing an adapted formulation of the chance-constraint and making a
more careful choice of the decision variable used for the IP-method.
We compared our method with the alternative of solving the relaxed problem using an
interior point method. It turned out, that our algorithm can solve problems with up
to 250 items in around 10 minutes. When using the interior point method, solving the
instances of 100 items already requires an average computing time of more than 1h.
In case of normally distributed items the problem of nonconcavity of the Lagrangian dual
could be solved by reformulating the constraint as a Second Order Cone constraint as
shown in the introduction. The obtained constraint has a strictly concave left hand side
function, which makes the Lagrangian dual strictly concave, as well. This approach will be
used in the following chapter to solve the relaxation of the Two-Stage Knapsack problem
with chance-constraint. In case of the Chance-Constrained Knapsack problem this idea
would lead directly to a deterministic equivalent Lagrangian dual that can be solved with
a deterministic (instead of stochastic) gradient algorithm or other methods for convex
optimization (e.g. interior point methods).
Solving the Chance-Constrained Knapsack problem with concave constraint function in-
troduced at the end of subsection 3.4.1 might be another solution to the nonconcavity
problem: The idea is to apply a logarithm to both sides of the constraint. The use of
a stochastic gradient or subgradient algorithm is, however, generally not adapted to the
form of the corresponding Lagrangian dual function. In case of a normal distribution (and
maybe some other continuous, logarithmic concave distributions), a deterministic equiv-
alent formulation of the Lagrangian function could be obtained and the relaxed problem
solved using a deterministic gradient algorithm. For distributions whose CDF is less easily
computable, the question of how to solve the obtained Lagrangian dual problem is less
obvious and remains to study.
A direct extension of the problems treated in chapters 2 and 3 is the Simple Recourse
Knapsack problem with chance-constraint. Problems that combine simple recourse and
chance-constraint have been studied previously as of course it might in some cases be
interesting to control both the expected overweight and the probability that the chance-
constraint is violated. As it turns out, the Two-Stage Knapsack problem with chance-
constraint studied in the following section can be relaxed to a continuous Simple Recourse

66

3.6 Concluding remarks and future work

Knapsack problem with chance-constraint. We will solve the latter by combining the
methods and results of chapters 2 and 3.
Like in the case of the method that we proposed in the previous chapter, future work on the
Chance-Constrained Knapsack problem will �rst of all consist in extending the proposed
solution method to more general distributions. Once more, such an extension might nat-
urally entail additional problems such as the question of the evaluation of the constraint
function. As explained in the conclusion of the previous chapter, these problems seem,
nevertheless, reasonably manageable. It is, however, probable that the nonconcavity of
the (simple) Lagrangian and the convergence of the Stochastic Arrow-Hurwicz algorithm
would still be an issue.

67

4 The Two-Stage Knapsack

Problem with Full Recourse

4.1 Introduction

4.1.1 Two-Stage Problems

Two-stage optimization problems are probably the "oldest" ([Dan55]), and certainly the
most studied stochastic optimization problems. As the name indicates, the decision pro-
cess consists of two stages: In the �rst stage the random parameters are still unknown,
whereas the second-stage decision is made after the revealing of their actual values. The
second-stage decision is therefore mainly a corrective decision that aims to increase the
�nal gain (or decrease the �nal cost), to make violated constraints be respected, or both.
Most work on two-stage problems that can be found in the literature is devoted to the
two-stage problem with linear objective functions and constraints (TSP). This particular
variant is generally stated as follows:

(TSP) min cTx+ E [Q(x, χ)]

s.t. Ax = b, (4.1a)

x ∈ X ⊆ Rn1
+ . (4.1b)

Q(x, χ) = min d(χ)Ty (4.1c)

s.t. W (χ)y ≥ h(χ) + T (χ)x, (4.1d)

y ∈ Y ⊆ Rn2
+ . (4.1e)

where c ∈ Rn1 , A ∈ Rm1×n1 and b ∈ Rm1 are deterministic matrices, χ is a random
vector and d(χ) ∈ Rn2 is the (possibly random) second-stage reward or cost vector.
W (χ) ∈ Rm2×n2 is called the recourse matrix, while T (χ) ∈ Rm2×n1 is the technology
matrix. Note that the overall objective function of the TSP (4.1) is clearly not linear. In
some special cases it can however be shown to be piecewise linear (see Theorem 4.1).
The TSP (4.1) is said to have �xed recourse if the recourse matrix is deterministic (or
�xed), i.e. W (χ) = W . A special case of the TSP with �xed recourse is the simple
recourse problem. One can show that in this case the components of the second-stage de-
cision vector depend directly on the sign of h(χ) +T (χ)x. It follows that the problem can
in most cases be reformulated as a single-stage decision problem where the second-stage
decision has been simpli�ed to the act of paying a penalty in case one of the constraints
is not satis�ed (see chapter 2 for details). On the contrary, full recourse problems involve

69

4 The Two-Stage Knapsack Problem with Full Recourse

second-stage decisions that can be seen as actual corrections of the decision made in the
�rst stage. In this chapter we will focus on the last variant.
A di�erent manner to classify TSP s is by the feasibility of the second-stage problem.
Problems with relatively complete recourse are problems whose second-stage problem al-
ways has a feasible solution, no matter what feasible decision has been made in the �rst
stage. If Y = Rn2

+ , this can be formalized as follows: Let posW := {t|∃y ≥ 0 : Wy ≥ t},
i.e. posW is the positive hull of W . Then, relatively complete recourse means that one
has h(χ̂) + T (χ̂)x ∈ posW (χ̂) for any feasible solution x of the �rst-stage problem and
for any realization χ̂ of the random vector. A special case of relative complete recourse
problems are problems with complete recourse where posW (χ̂) = Rm2 for any realization
χ̂ of χ. Note that continuous simple recourse problems always have complete recourse
(see chapter 4).
If the second-stage variables are required to be integer or binary, the above de�nitions ap-
ply with the integer hull intW := {t|∃y ∈ Zn2

+ : Wy ≥ t} or binary hull binW := {t|∃y ∈
{0, 1}n2 : Wy ≥ t}, respectively. Similar to the continuous case, simple integer recourse
problems always have complete recourse. In contrary, TSP s with binary (or bounded
integer) second-stage variables never have complete recourse as for all realization χ̂ of the
random vector (W (χ̂)y)i is bounded.

Two-Stage Problems with continuous recourse

Relatively few research has been published on the properties of the general linear two-
stage problem (4.1) (see [WW67], [Kal76] or [KM05]). Most papers, surveys and books
on two-stage programming restrict their study to two-stage models with �xed complete
recourse. One reason is the question of how to handle the second-stage feasibility of a
two-stage model in the case of random (or non-complete) recourse. Assuming complete
recourse assures that for any (feasible or infeasible) �rst-stage decision vector and any
scenario there exists a feasible second-stage solution. In particular, one does not have to
worry about the case where the second-stage problem takes value +∞ (since infeasible)
with positive probability, which would result in an overall solution value of +∞.
By duality, the de�nition of complete recourse is equivalent to saying that problem (4.1)
has complete recourse if W (χ̂)Tλ ≥ 0 implies λ = 0 for all realizations χ̂ of χ (see for
example [vdV95]). Consequently, one has a rather simple certi�cate for complete recourse
in the case of TSP s with �xed recourse.
The following theorem is a well known result for TSP s with �xed complete recourse:

Theorem 4.1. [see e.g. [vdV95],[KM05]] Given a two-stage problem of type (4.1) with
�xed complete recourse and dual feasible second-stage problem (for any realization of the
random parameters). Then, for any realization χ̂ of χ, the recourse function Q(x, χ̂) is

• real-valued,

• piecewise linear and convex in x,

• Lipschitz continuous in x,

70

4.1 Introduction

• subdi�erentiable in x.

Moreover, if χ follows a discrete distribution, the expected value function E [Q(x, χ)] is
piecewise linear and convex, as well. In the case of continuously distributed random vari-
ables, E [Q(x, χ)] is continuously di�erentiable.

Similar results can be obtained for general �xed recourse problems (see [vdV95]).
Only few references are available that explicitly study the case of TSP s with random
recourse matrix. For continuous second-stage decision variables the recourse function
Q(·, χ) : Rn2 → R (and thus the overall objective function) can, however, be shown to be
convex even when the recourse matrix depends on the random vector χ.

Two-Stage Problems with integer recourse

Like in the special case of simple recourse problems (see chapter 2), general TSP s become
much harder to solve when (some of) the second-stage decision variables are required to
be integer. First of all, the second-stage problem of integer recourse problems is generally
NP-hard. In addition, one looses in general some nice properties of TSP s with continuous
recourse variables such as continuity and convexity.
The study of structural properties of TSP s with integer recourse is, to the best of our
knowledge, for instance restricted to the �xed recourse case. Most papers assume in
addition complete recourse, a �xed technology matrix and/or a �x recourse cost vector
d(χ) = d.
One of the most general structural results for TSP s with integer recourse is due to Schultz:

Theorem 4.2 (see e.g. [Sch93],[Sch95]). Given a two-stage problem of type (4.1) having

• �xed and complete integer recourse,

• �xed recourse costs,

• a dual feasible second-stage problem.

Moreover, let the expectation of the random vector χ be �nite. Then, the expected value
function E [Q(x, χ)] is lower semi-continuous in x. If, in addition, χ has an absolutely
continuous density, E [Q(x, χ)] is continuous in every point x.

4.1.2 The Two-Stage Knapsack Problems with full recourse

In this chapter we study a Two-Stage Knapsack problem with full recourse and random
item weights: In the �rst-stage items are placed in the knapsack without knowledge of
their actual weight. In the second stage, the weights of all items have been revealed. The
second-stage decision consists in deciding which items to additionally put in the knapsack

71

4 The Two-Stage Knapsack Problem with Full Recourse

and which to remove in order to increase the total gain and/or to make the capacity
constraint be satis�ed. The general problem can be stated as follows:

(GTSKP) min E
[
rT (χ)x

]
+ E [Q(x, χ)]

s.t. x ∈ {0, 1}n. (4.2a)

Q(x, χ) = max r(χ)Ty+ − d(χ)Ty− (4.2b)

s.t. (x+ y+ − y−)Tχ ≤ c, (4.2c)

y+
i ≤ 1− xi ∀ i = 1, . . . , n, (4.2d)

y−i ≤ xi ∀ i = 1, . . . , n, (4.2e)

y+, y− ∈ {0, 1}n. (4.2f)

Here χ is an n-dimensional random vector that represents the random weights and c is
the capacity of the knapsack.
The second-stage decision vectors y+ and y− have the same dimension as the �rst-stage
decision vector x. y+ models which items are added in the second stage. Of course, an
item can only be added if it has not already been placed in the knapsack in the �rst stage
(constraint (4.2d)) and for all realizations χ̂ of χ the second-stage reward r(χ̂)i of item
i should be strictly smaller that its �rst-stage reward r(χ̂)i. When we want to remove
the item with index i in the second stage, we set y−i to 1 (which is only possible if the
item has been added in the �rst stage, see constraint (4.2e)). In this case, a penalty d(χ)i
occurs that is strictly greater than the corresponding �rst-stage reward.
The GTSKP is a two-stage problem with integer recourse. It has relatively complete
recourse, as for any feasible �rst-stage decision, removing all items is always a feasible
solution for the second stage. Due to the binary recourse requirement, the problem does,
however, not have complete recourse. In addition, the GTSKP has random recourse and
technology matrices (the random weight vector) and the rewards and costs might depend
on the random weights χi. The existing results concerning structural properties of general
TSP s can therefore not directly be applied to the GTSKP .
In this chapter, we study two variants of this problem. Their formulations are given in
sections 4.2.1 and 4.3.1. While in the �rst variant we assume independently normally dis-
tributed item weights, the second study concerns the case of a �nite number of scenarios.
The Two-Stage Knapsack problem with full recourse has been studied before by Lisser et
al. ([LLH09]). Their study concerns the more general, quadratic version of the problem
where an additional reward (and cost) is introduced for each pair of items. The authors
assume that some of the item weights are already known in the �rst stage. They therefore
introduce an additional knapsack constraint in the �rst stage. More precisely, if in the
�rst stage some of the items with deterministic weight are chosen, these items have to
already respect a certain knapsack capacity. In the general model (4.2) we allow that the
items with deterministic weight (i.e. with zero variance) chosen in the �rst stage do not
respect the knapsack capacity. If the penalties in the second stage are small enough, it
might even be optimal to choose all items in the �rst stage.

72

4.1 Introduction

4.1.3 Solving Two-Stage Problems

TSP s with �nite number of scenarios and continuous decision variables

Like in the special case of simple recourse problems, general TSP s can be reformulated as
deterministic equivalent linear programming problems if the random vector χ has only a
�nite number of possible outcomes χ1, . . . , χK with corresponding probabilities p1, . . . , pK :

(TSPD) min cTx+
K∑
k=1

pk
(
d(χk)Tyk

)
s.t. Ax = b, (4.3a)

T (χk)x+W (χk)yk ≤ h(χk) ∀ k = 1, . . . , K, (4.3b)

x ∈ X ⊆ Rn1
+ , (4.3c)

yk ∈ Y ⊆ Rn2
+ ∀ k = 1, . . . , K. (4.3d)

Parameters and variables are de�ned as in the general model of the TSP (4.1).
The �rst one to mention two-stage programs (with discretely distributed random vari-
ables) was George Dantzig in his article from 1955 ([Dan55]). Concerning the resolution
of such problems the author, however, refers the reader to general linear programming
techniques that do not make advantage of the special structure of TSP s.
In 1960, Dantzig published together with P. Wolfe an article on a "Decomposition prin-
ciple for linear programs" ([DW60]). This so called Dantzig-Wolfe Decomposition can
be applied to linear programs with a very particular structure. In [DM61] Dantzig and
Madansky show that in case of continuous �rst- and second-stage decision variables, the
dual of problem (4.3) has exactly this structure. This allows the authors to apply the
Dantzig-Wolfe Decomposition to solve TSP s with random right hand side vector h.
In 1969, Van Slyke and Wets (see [SW69]) �rst proposed the so called L-shaped method
to solve the continuous TSPD. Until today it is one of the most famous methods to
solve continuous TSP s. Contrary to the method by Dantzig and Madansky, the authors
directly solve the primal problem (4.3). The notation "L-shaped" is due to the shape of
the constraint matrix of the linear programming formulation (4.3). The idea of the algo-
rithm is based on Benders Decomposition technique: The algorithm starts with solving
the �rst-stage problem and then iteratively adds so called feasibility and optimality cuts.
While feasibility cuts ensure that the �nal �rst-stage solution produced by the process is
second-stage feasible, optimality cuts continuously add new lower bounds on the second-
stage solution value. In [SW69] the authors restrict their study to the case where only h
is random. Their method can, however, be easily extended to the case of �xed recourse
problems (see for example the overview on Optimization under Uncertainty in [RR02]).
The L-shaped method has been advanced in [BL88]: Instead of adding one single cut
at each iteration, the authors propose to add several cuts at once by linearizing Q(x, χk)
(where k is one of the �nitely many scenarios). The advantage is that a smaller number of
iterations is needed. However, there are also examples where the fact that the subproblem

73

4 The Two-Stage Knapsack Problem with Full Recourse

contains more constraints (and therefore takes more time to be solved) considerably slows
down the algorithm.
Although the L-shaped method by Van Slyke and Wets (and its later improvements)
present an important and universal tool in continuous two-stage programming, its ap-
plication to large scale problems is restricted. The reason is the continuously increasing
number of cuts and size of the master problem. The Regularized Decomposition method
by Ruszczy«ski ([Rus86]) was created to overcome these di�culty. The method can be
applied to a more general class of problems whose objectives consist of a sum of convex
piecewise-linear functions. The method is based on the same decomposition principles
as the L-shaped method and can thus also be seen as an advanced version of this basic
algorithm. However, a regularizing term is added to the objective function. This term is
basically the squared euclidean distance between current solution vector and a so called
trial point. The regularizing term serves to keep the step size (i.e. the di�erence between
the last calculated and new solution vector) small. It thus has a stabilizing e�ect that
results in a smaller number of needed iterations. Moreover, at most n1 + 2K cuts need to
be stored at the same time due to the use of only linearly independent, active cuts. Com-
putational tests have shown that the Regularized Decomposition method outperforms the
basic L-shaped method as well as the multi-cut version of [BL88] on large scale problems
(see [Rus93]). Independent tests have been conducted by Kall and Mayer that as well
demonstrate the e�ciency of the approach compared to other LP-solvers (see [KM93] and
[Kal94]).

Integer TSP s with �nite number of scenarios

In the case of the Integer TSP some of the �rst- and/or second-stage variables are as-
sumed to be integer or binary.
In case where only the �rst-stage variables are required to be integer, the problem inherits
most of the properties of the corresponding continuous TSP .
Two-stage problems with integer recourse, however, are generally much more di�cult to
solve than their continuous counterpart. Consequently, most algorithms that have been
proposed for integer recourse problems are either restricted to special cases (e.g. �xed
recourse) or have some serious drawbacks, contrary to the continuous case where the L-
shaped method is mostly accepted to be an e�ective algorithm to exactly solve all types
of two-stage problems. Moreover, while the L-shaped method by Van Slyke and Wets
already dates back to 1969, the study of integer TSP s is rather young and most of the
work on how to solve integer TSP s has been published in the last 17 years.
The cut generation of the L-shaped method relies heavily on the fact that in the case of
continuous second-stage decision variables the recourse function Q is convex. In the case
of integer second-stage variables this is generally not true. Laporte and Louveaux ([LL93])
solved this problem by proposing optimality cuts that are valid for arbitrary second-stage
and binary �rst-stage variables. Their idea is based on the existence of a lower bound
on the second-stage solution value due to the binary requirement in the �rst stage. The
integrality of the �rst-stage variables is handled by a branch-and-cut procedure.

74

4.1 Introduction

In [CT98] Carøe and Tind propose a method for problems with continuous �rst and inte-
ger second-stage variables (that however can be extended to integer �rst-stage variables)
(see also [Car10a]). The method is based on general Benders decomposition and makes
use of the theory of generalized duality in the case of (mixed) integer variables. The in-
tegrality of the second-stage decision variables is handled by either cutting plane or B&B
techniques. However, the authors admit that the nonconvex integer problem that has
to be solved at each iteration is an important drawback of their method. An extended
version of their algorithm has been proposed in [NT08]. Among others, this extension
is one of the rare exceptions of solution algorithms for integer TSP s that allows for the
solution of problems with random recourse matrix.
In [SSvdV98] Schultz et al. studied the case where only the right hand side of the second-
stage constraint is random. Their algorithm is mainly composed of two steps: First, one
computes a so called Gröbner basis for the second stage problem based on the integral-
ity of the second-stage variables. This basis allows for a rather cheap evaluation of the
second-stage value function. The second step consists of computing a �nite set of so
called candidate solutions for the �rst-stage that is known to contain an optimal solution.
This optimal solution can then be detected by evaluating the second-stage value function
at each point of this set. The authors acknowledge that, on the one hand, the compu-
tation of the Gröbner basis is generally of "exponential complexity" and, on the other
hand, the �nite set of �rst-stage variables can be "enormous". Although they show that
their algorithm is able to solve problems that are intractable when solved with common
mixed-integer solvers, their method is (for instance) clearly restricted to the resolution of
problems of moderate size.
The main idea of the method by Carøe and Schultz presented in [CS99] is to intro-
duce one �rst-stage solution vector for each of the second-stage scenarios and to add a
so called non-anticipativity constraint that assures that all these �rst-stage vectors are
equal. The advantage of this approach is that the corresponding Lagrangian dual (where
the non-anticipativity constraint has been relaxed in the objective function) is separable
into smaller problems that can be independently solved. However, these subproblems
contain �rst- and second-stage variables, contrary to the Benders decomposition based
approaches. An important advantage compared with the approach by Carøe and Tind is
the convexity (resp. concavity) of these subproblems. However, due to integrality con-
ditions of the �rst-stage variables, an optimal solution of the Lagrangian Dual does not
necessarily satisfy the non-anticipativity constraint. Therefore, the authors additionally
apply a B&B algorithm to �nd a feasible solution. Like the method by Carøe and Tind
this approach relies thus on the integrality of the �rst-stage decision variables.
Most of these early algorithmic proposition lack serious computational studies, probably
due to the evident drawbacks present in each of these pioneer algorithms.
A computationally promising approach to solve integer two-stage problems with discrete
distributions has been proposed by Ahmed et al. in [ATS03]: The authors present a
�nite branch-and-bound algorithm that does not require neither the �rst-stage variables
to be discrete, nor the recourse matrix to be deterministic. Their idea is based on the
observation that by making a change of variables one can achieve that the discontinu-

75

4 The Two-Stage Knapsack Problem with Full Recourse

ities of the second-stage value function lie orthogonal to the variable axes. This allows
for the partition of the feasible set in a �nite number of rectangular regions such that
the second-stage value function is constant over each of these regions. The idea relies,
however, on the fact that the second-stage variables are purely integer. Moreover, the
authors assume the technology matrix to be deterministic but remark that an extension
to a random technology matrix with �nite number of outcomes can be easily achieved.
Computational comparison with previously proposed methods ([CT98],[SSvdV98]) show
the e�ciency of this new approach.
Another, very recent algorithmic idea that has been shown to be computational promising
is the so called D2 method by Sen and Higle ([SH05]). The method follows the principle of
decomposition and convexi�cation. The basic idea is to iteratively convexify the coupled
master and subproblems (Disjunctive Decomposition). While the initial algorithm pro-
posed in [SH05] should be seen as a general basis for more advanced and computationally
e�cient algorithms, several papers have been published since presenting �rst computa-
tional studies ([NT08],[NS08]) and extensions ([SS06a],[NS07],[SZH09]). Non of these
publications, however, indicates if the underlying idea might in fact be a breakthrough
in the study of integer TSP s (see [NS08] where an advanced version of the algorithm by
Carøe and Tind ([CT98]) is shown to be computational comparable to the D2 method).
A universally e�cient algorithm to solve integer TSP s is thus still to be found. It is,
however, clear that for a large number of discrete scenarios the exact solution of any kind
of TSP becomes intractable. In this case, an alternative is the approximation of the
probability space by a (small) sample of scenarios. This approach is the most common
approach in case of continuously distributed random variables and will be presented in
the next section.

TSP s with continuously distributed random variables

Solving two-stage optimization problems with full recourse and continuously distributed
random variables to optimality is, in general, intractable. The main di�culty consists
naturally in the evaluation of the expectation of the recourse function Q. This problem
is most commonly avoided by approximating the probability distribution by a (relatively
small) �nite sample of scenarios. There are two common approaches.
In the �rst approach, the sampling is done before the actual solution process. In this
case, the initial problem is approximated by another problem with only �nitely many sce-
narios. The probably most well-known representative of this class of solution approaches
is the Sample Average Approximation (SAA) method. The idea of this method is to
independently draw N samples of the random parameters. In the approximated problem
each of this scenario has probability 1

N
. Depending on the initial problem, the obtained

SAA could be solved by one of the methods for TSP s with discretely distributed random
variables discussed in the two previous subsections. In addition to the obvious advantages
of SAA approaches like easier computation of the objective function or (sub)gradients by
approximation, it can be shown that for an increasing sample size and under some mild
conditions the solutions of the SAA problem converge (with probability one) to an opti-

76

4.1 Introduction

mal solution of the initial problem. However, it is in general di�cult to a priori determine
a sample size su�cient for a desired approximation precision (for a recent review of results
concerning SAA approaches see [Sha07]).
One of the �rst SAA algorithms for TSP s has been proposed in [SH98] to solve �xed
recourse problems with independent random right hand side vector and technology ma-
trix. The authors show how to obtain a subgradient of the approximated expectation of
the second-stage function. They argue that due to the di�erentiability of the expected
value function E[Q(·, χ)] this subgradient is a "consistent estimator" of the gradient of
E[Q(·, χ)]. Based on these observations the authors develop a trust region method to
solve the SAA approximation. Depending on the quality of the obtained solutions new
samples can be generated and the sample size be adapted during the algorithm.
For the case of a �nite (but probably large) feasible set for the �rst-stage decision vari-
ables, Kleywegt et al. [KSH02] study the SAA approach under the aspect of convergence.
They prove that, under some mild assumptions (that are always satis�ed if the random
variables are discretely distributed), the solutions of the SAA converge at exponential
rate towards an optimal solution of the initial problem. Moreover, the authors show that
the sample size needed to obtain a certain precision only grows logarithmically in the size
of the �rst-stage problem, while most other SAA approaches need a sample size linear in
the �rst-stage problem size (see for example [Sha07]).
Ahmed and Shapiro ([AS02]) extended the SAA approach to solve TSP s with integer
recourse.
In the second approach to approximate the solution of two-stage optimization problems
with continuously distributed random variables, the sampling is done during the solution
process. A well-known representative of such algorithms is the stochastic (sub)gradient
algorithm used to solve (sub)di�erentiable, continuous stochastic optimization problems
(see chapters 2 and 3). The most famous of such approaches for two-stage optimization
is the "Stochastic Decomposition method" by Higle and Sen ([HS91],[HS96]). This al-
gorithm is based on the L-shaped method by Van Slyke and Wets. The optimality cuts
are computed based on a continuously growing sample from the underlying probability
distribution: At each iteration a new sample is added and the new as well as already
existing optimality cuts are updated accordingly. In their work, the authors, however,
assume complete recourse. Therefore, no feasibility cuts are needed. To the best of our
knowledge, no comparable algorithm has been proposed for the integer recourse case.

4.1.4 Approximation Algorithms for Two-Stage Problems

In the second part of this chapter we present non-approximability results for some Two-
Stage Knapsack problems with �nitely many second-stage scenarios.
Approximation algorithms for two-stage problems can be divided in two classes: First,
there are those approaches that approximate the given problem by another, slightly "sim-
pler" problem that can be solved with common solution methods. Examples are convex
approximations of the objective function (see [vdV04]) or SAA methods (see [KSH02]

77

4 The Two-Stage Knapsack Problem with Full Recourse

and subsection 4.1.3). However, these approximations generally do not a�ect the NP-
hardness of the initial problem. In the second class one can �nd those algorithms that
aim to solve NP-hard two-stage problems approximately in polynomial time. These al-
gorithms are generally created for one particular two-stage problem. In the following, we
want to give examples of problems that admit algorithms of the second class and outline
the idea of the corresponding algorithm:

1) Stochastic Single Resource Service Provision problem (SSRP) ([DST03], [SvdV03]):
The problem consists in deciding which services to install (�rst-stage decision) in order
to be able to maximize, in the second stage, the pro�t obtained by meeting (part of)
the random demands. A single resource capacity constraint restricts the resources
available to install services (�rst-stage) and to accept demands (second-stage).
In [DST03] and [SvdV03] a �nite number K of demand scenarios is assumed. The
authors prove that the obtained problem is strongly NP-hard, i.e. that no FPTAS
exists, unless P = NP . Furthermore, the authors show that any basic solution of the
continuous relaxation has at most K interior �rst- and second-stage decision variables
(where interior means that theses variables are neither equal to their lower, nor to their
upper bound). They develop an LP round-down heuristic with approximation ratio of
max{ 1

K+1
, 1
n
} where n is the number of services available. Moreover, they show that

this bound is tight. For the case where installing all services in the �rst stage is a
feasible solution, they even proof a constant ratio.

2) Stochastic Scheduling ([SS07]): In the �rst-stage a provider has to decide which subset
out of a given set of clients to accept to serve and which clients to defer to a di�erent
provider. In the second stage it comes to be known which clients actually make their
request. The provider receives a reward for each client that he can, in the end, serve.
This reward is naturally higher than the reward he obtains when deferring a client to
the competition.
The authors of [SS07] assume a �nite number of second-stage scenarios that is polyno-
mial in the input size. They show that, by extending a 1

2
-approximation algorithm for

the corresponding deterministic problem, the stochastic variant can be approximated
with the same approximation ratio. The idea is to apply the approximation algorithm
to each of the second-stage scenarios. This gives a dual feasible solution that is used
to construct the �rst-stage decision. Then the second-stage solutions are computed
using an adapted version of the approximation algorithm for the deterministic case.

3) Stochastic Maximum-Weight Matching ([KS06]): In this model every edge of a given
graph has a deterministic �rst-stage and a scenario dependent second-stage weight.
Edges chosen in the �rst stage cannot be rejected in the second stage, but additional
edges can be chosen. The objective is to maximize the expected weight of the second-
stage matching.
The authors of [KS06] assume a �nite number of scenarios for the second-stage weight
vector. They show that the obtained problem in NP-complete and propose a very

78

4.1 Introduction

simple approximation algorithm with performance ratio 1
2
: The idea is to indepen-

dently compute optimal matchings for the �rst-stage weights as well as for each of the
possible second-stage weight vectors. Then one compares the objective function value
of the �rst-stage solution with the expectation over the obtained second-stage solu-
tions. Their algorithm chooses therefore either the solution where the whole matching
is decided in the �rst stage, or the solution where no edge at all is chosen in the �rst
stage. As the deterministic weighted matching problem is polynomial time solvable,
their algorithm is polynomial in the input size as well as the number of scenarios.

4) Stochastic Minimum-Weight Bipartite Matching I ([KKMU07]): Given a bipartite
graph such that every edge has a deterministic �rst stage and a random/scenario
dependent second-stage weight. In the �rst stage edges can be chosen. In the second
stage, the edge set has to be completed in case it does not already contain a perfect
matching of the bipartite graph. Contrary to the work in [KS06] presented in 3) the
�nal set of chosen edges thus does not have to be a matching, but has to contain a
maximum cardinality matching. Naturally, purchasing edges in the �rst stage is less
expensive than in the second stage. The aim is to minimize the expected total cost.
The authors of [KKMU07] present an approximation algorithm with approximation
ratio in O(n2). The algorithm �rst solves the continuous relaxation of the problem
and then decides, based on the components of the solution vector, which edges to buy
in the �rst, and which in the second stage.

5) Stochastic Minimum-Weight Bipartite Matching II ([KKMU07]): Contrary to the pre-
vious problem 4) the second-stage edge costs are assumed to be a multiple of the
�rst-stage edge cost (with �x coe�cient) and thus known. However, one assumes the
set of vertices to match to be random.
In [KKMU07] the authors show that in case of �nitely many second-stage scenarios
this problem is a special case of problem 4). For the general case they show that there
exists an approximation ratio such that approximating the solution within this ratio
is NP-hard.

6) Stochastic Set Cover ([SS06c],[RS06],[SS06b]): The problem is the following: Given a
set of n elements and m subsets. In the �rst stage some subsets have to be chosen at
a �rst-stage cost. In the second stage, the subset of elements to cover is revealed. If
this set is not yet covered by the subsets chosen in the �rst stage, additional subsets
can be purchased at second-stage costs.
The authors of [SS06b] prove that if the corresponding deterministic set cover prob-
lem can be approximated with ratio ρ, then the stochastic set cover problem can be
approximated with a worst case ratio of 2ρ. More precisely, the authors show that the
integrality gap of the stochastic set cover problem is at most twice the integrality gap
of the deterministic set cover problem. It follows that the stochastic set cover problem
is 2 lnn-approximable in case of a number of scenarios polynomial in the input size.

7) Stochastic Vertex Cover ([GPRS04],[IKMM04],[RS06],[SS06b]): In this two-stage prob-
lem one wants to cover a random subset of edges of a given graph by choosing a

79

4 The Two-Stage Knapsack Problem with Full Recourse

minimum cardinality vertex set. All vertices have the same �rst-stage cost. Vertices
purchased in the second stage are of a constant factor more expensive.
The authors of [IKMM04] propose a constant factor approximation based on the fol-
lowing idea: Vertices with a high degree have a high probability to be incident to an
edge that has to be covered in the second stage. The algorithm greedily determines
in the �rst stage a maximal matching such that the vertex degrees induced by this
matching are bounded by a certain constant. Then the vertices whose induced degree
attains this bound are kept as �rst-stage vertices.

8) Stochastic Steiner Tree/Forest ([GPRS04],[IKMM04]): Given a graph whose vertices
are independently active with a given probability. The aim is to construct a Steiner
Tree that connects the active vertices. In the �rst stage, while the active vertex set
is still unknown, one can purchase edges at a �rst-stage cost. The second-stage costs
are assumed to di�er by a constant factor λ from the �rst-stage costs and the aim is
to minimize the expected overall cost.
Among other variants of the problem, the authors of [IKMM04] study the case where
the graph is metric and the probability of a vertex to be active is at least 1

kλ
with k ≥ 1.

Then they show that a minimum spanning tree of the initial graph is a k-approximation
of the optimal solution.

9) Stochastic Shortest Path with random sink ([RS06]): Given a graph with (�rst-stage)
edge costs, a �x source node and a set of scenarios consisting of a sink node, a cost-
factor (by which the �rst-stage edge cost is multiplied in this scenario) and a proba-
bility. In the �rst stage edges can be purchased at their �rst-stage cost. In the second
stage, the sink node has come to be known and additional edges can be purchased in
order to link source and sink by a minimum cost path.
The authors of [RS06] show that in any optimal solution the edges purchased in the
�rst-stage induce a tree that contains the source. They conclude that the stochastic
shortest path problem with random sink is equivalent to the so called tree-star network
design problem. The tree-star network design problem consists in �nding a tree that
minimizes the sum of tree cost and total cost of the shortest paths from the tree to a
set of demand nodes. It has been shown previously that this deterministic problem is
5-approximable, which is therefore also true for the stochastic shortest path problem
with random sink.

10) Stochastic Minimum Spanning Tree ([DRS05]): The stochastic minimum spanning
tree problem is generally de�ned as follows: Given a graph where each edge has a
deterministic �rst- and a random second-stage cost. The decision maker can choose
some edges in the �rst stage and has to complete its choice in the second stage to
obtain a spanning tree.
In ([DRS05]) the authors study in particular two cases for the random second-stage
costs: Either the number of possible outcomes in the second stage is assumed to be
�nite and known, or we are given a black-box from which we can draw independent

80

4.1 Introduction

samples of the unknown distribution. The authors propose to approximate these prob-
lems using randomized algorithms: They �rst solve a linear relaxation. The decision
of which �rst- and second-stage variables to set to 1 is then made by independent
Bernoulli trials: Each �rst- and second-stage variable is independently set to one with
a success probability that equals the corresponding solution component of the relax-
ation.
In case of �nitely many, known scenarios, they obtain an approximation ratio of order
log n + logK (with high probability) where n is the number of vertices of the graph
and K is the number of scenarios. The running time of the algorithm is polynomial in
n and K.
In case of the black-box assumption the randomized procedure explained above is pre-
ceded by an independent drawing of a set of scenarios whose size is polynomial in n
and a value λ de�ned as

λ := max
1≤i≤K,e∈E

{
cie
c0
e

,
c0
e

cie

}

Here, for an edge e c0
e is the �rst- and cie the second-stage cost (in scenario i). The

algorithm has an approximation ratio of order log n+log λ (with high probability) and
a running time polynomial in n and λ.

To conclude this subsection on approximation algorithms for two-stage problems, we want
to outline some properties of two-stage problems that, in some cases, make the problem
easier to approximate than in general:
First of all there is the assumption that the second-stage problem has a number of second-
stage scenarios that is polynomial in the input size. This assumption allows in some cases
for an approximation algorithm that mainly applies a known approximation algorithm for
the deterministic variant of the problem to all second-stage scenarios.
Furthermore, in some cases assuming that the second-stage cost (resp. reward) is a �x
multiple (resp. fraction) of the �rst stage cost (resp. reward) seems to make the problem
easier.
Last but not least, Gupta et al. present in [GPRS04] a method called boosted sampling
that makes use of an approximation algorithm for the deterministic problem to create an
algorithm for the two-stage variant. Contrary to the aforementioned idea to apply such
an algorithm to all second-stage scenarios, the algorithm of Gupta et al. does only require
a black-box to draw samples. Their approach can, however, only be applied to problems
that are subadditive. This means mainly that the union of two optimal solutions for
two di�erent scenarios gives an optimal solution for the combination of these scenarios.
Moreover, the approach needs the existence of a so called cost-sharing function. The
ratio of the obtained approximation algorithm then depends on both the ratio of the used
approximation algorithm for the deterministic problem as well as the "quality" of the
cost-sharing function (for details see [GPRS04]). Examples of problems that satisfy the
needed conditions are stochastic steiner tree, facility location and vertex cover.

81

4 The Two-Stage Knapsack Problem with Full Recourse

4.1.5 Solving Two-Stage Knapsack Problems

Apart from the work presented in this thesis, no references can be found that explicitly
treat linear Two-Stage Knapsack problems. However, Lisser et al. ([GLLH10],[LLH09])
studied quadratic knapsack problems. They propose upper bounds by using linear and
semi-de�nite relaxations.
Another studied problem that is close to Two-Stage Knapsack problems is the Stochastic
Single Node Provision problem studied in [DST03]. The main di�erence is that the
second-stage decision variables are continuous and that the weights uniformly equal 1.
This di�erence allows the authors to solve the problem approximately by using an LP
rounding-down heuristic with performance guarantee.
In the �rst part of this chapter we will propose upper and lower bounds for the Two-Stage
Knapsack problem with normally distributed weights. The upper bounds are obtained by
solving a continuous relaxation of the treated problem. In fact, this continuous relaxation
can be shown to be a Simple Recourse Knapsack problem with chance-constraint and
results from chapters 2 and 3 can be applied. The proposed lower bounds replace the
exact evaluation of the objective function and are based on a study of the second-stage
problem. The best possible lower bound that can be obtained by the proposed method is
then determined in a B&B framework.
In the second part of this chapter we focus on the Two-Stage Knapsack problem with
�nite number of second-stage scenarios. We show that this problem is equivalent to
the multiply-constrained (or multi-dimensional vector) knapsack problem with uniform
capacities. Therefore, (non-)approximation results for the latter problem are valid for the
Two-Stage Knapsack problem with a �nite number of scenarios, as well. Moreover, we
show that neither assuming a polynomial number of scenarios nor a linear dependency
of �rst- and second-stage rewards make the problem easier to approximate, as it was the
case for some of the problems discussed in section 4.1.4. Concerning the approximation
algorithm for Two-Stage problems presented in [GPRS04], it is easy to see that Two-Stage
Knapsack problems with random weights do not satisfy the condition of subadditivity, as
it is not even clear what a combination of two scenarios looks like. And even in the case
where two scenarios di�er only slightly, the union of the corresponding optimal solutions
might be highly infeasible.

4.2 The Two-Stage Knapsack Problem with normal

weight distributions (TSKP)

4.2.1 Mathematical formulation and properties

We consider a stochastic knapsack problem of the following form: Given a knapsack with
�xed weight capacity c > 0 as well as a set of n items. Each item has a weight that is not
known in the �rst stage but comes to be known before the second-stage decision has to be
made. Therefore, we handle the weights as random variables and assume that weight χi
of item i is independently normally distributed with mean µi > 0 and standard deviation

82

4.2 The Two-Stage Knapsack Problem with normal weight distributions (TSKP)

σi. Furthermore, each item has a �xed reward per weight unit ri > 0.
In the �rst stage, items can be placed in the knapsack. However, if the outcome of the
total weight of these items should exceed the capacity, some of these �rst-stage items have
to be removed in the second stage. Therefore, we restrict the percentage of cases where
the �rst-stage items lead to an overload by introducing a chance-constraint in the �rst
stage.
At the beginning of the second stage the weights of all items are revealed. In case of an
overload, items have to be removed and a penalty d has to be paid for each unit of weight
that is unpacked. Our objective is thus to minimize the total penalty. If we decide to
remove item i, the corresponding second-stage decision variable y−i is set to 1. In this
case, all components of y+ can automatically be set to 0. If the capacity constraint is
respected, items can be added if and only if this does not lead to an overload (second-stage
items). If we decide to add item i, we set y+

i = 1. In this second case, all components of
y− can be set to 0. It is easy to see that this model only makes sense if the reward per
weight unit ri of an item that is added in the second stage is strictly smaller than ri. The
aim is to maximize the expected total reward of the knapsack:

The Two-Stage Knapsack Problem with chance-constraint (TSKP)

(TSKP) max
x∈{0,1}n

E

[
n∑
i=1

riχixi

]
+ E [Q(x, χ)]

s.t. P{
n∑
i=1

χixi ≤ c} ≥ p. (4.4a)

Q(x, χ) = max
y+,y−∈{0,1}n

n∑
i=1

riχiy
+
i − d

n∑
i=1

χiy
−
i (4.4b)

s.t. y+
k ≤ 1− xk ∀ k = 1, . . . , n, (4.4c)

y−k ≤ xk ∀ k = 1, . . . , n, (4.4d)

y+
k ≤ 1R+(c−

n∑
i=1

χixi) · y+
k ∀ k = 1, . . . , n, (4.4e)

y−k ≤ 1R+(
n∑
i=1

χixi − c) · y−k ∀ k = 1, . . . , n, (4.4f)

n∑
i=1

(xi + y+
i − y−i)χi ≤ c. (4.4g)

where ri < ri for all i = 1, . . . , n, d ≥ maxi∈{1,...,n} ri and p ∈ [0.5, 1] is the prescribed
probability.
Constraints (4.4e) and (4.4f) assure that items can only be added in the second stage in
case the �rst-stage items do not lead to an overload, and they can only be removed in case
of an overload. Therefore, the above setting does not allow an exchange of items in the
second stage. These 2n nonlinear constraints could be replaced by the n2 − n following

83

4 The Two-Stage Knapsack Problem with Full Recourse

linear constraints:

y+
i + y−j ≤ 1 ∀ i, j ∈ {1, . . . , n}, i 6= j

However, we chose the nonlinear problem formulation (4.4) in order to be able to rewrite
the second-stage problem as a linear combination of two independent problems, one treat-
ing the second-stage decision variables y+

i , the other the decision variables y−i (see sub-
section 4.2.1, Property 3).
Throughout, we assume that the zero-vector is not an optimal �rst-stage solution (i.e.
that at least one item is put in the knapsack in the �rst stage) and that the probability
that the total weight of all n items is smaller or equal than c is negligible.

Properties of the TSKP

The following properties are mainly used in section 4.2.3 to calculate lower bounds on the
objective function value for a given �rst-stage solution.

Property 1: The two-stage problem (4.4) is a relatively complete recourse problem, i.e.
for every feasible �rst-stage decision there exists a feasible second-stage decision.

Property 2: Given a �rst-stage decision and a realization of χ, solving the second-stage
problem means solving a deterministic knapsack problem:
In case of an underload, the capacity of the "second-stage knapsack" equals the amount
of capacity that is still unused after the �rst stage. The set of items that one can choose
from contains all items that have not been added in the �rst stage.
In case of an overload, the second-stage knapsack is the initial knapsack. However, the
choice can only be made among the �rst-stage items.
It is thus clear how to solve the second-stage problem once the �rst-stage decision is made
and the actual item weights are revealed. However, no method to practically compute
the expected second-stage solution value for a given �rst-stage decision is known, mainly
due to the assumption that the item weights follow continuous distributions. This im-
plies, that for a given �rst-stage solution, we are not able to compute the corresponding
objective function value, either. Instead, one can compute a lower bound (see section
4.2.3). This lower bound can, on the one hand, be helpful in order to get an idea of the
quality of the chosen decision. On the other hand, it can replace the exact evaluation
of the objective function value in an appropriate framework in order to search for good
overall lower bounds (see section 4.2.4).

84

4.2 The Two-Stage Knapsack Problem with normal weight distributions (TSKP)

Property 3: The random variable Q(x, χ) can be written as the linear combination of
two random variables Q1(x, χ) and Q2(x, χ):

Q1(x, χ) = max
y+∈{0,1}n

n∑
i=1

riy
+
i χi (4.5a)

s.t. y+
k ≤ 1− xk ∀ k = 1, . . . , n, (4.5b)

y+
k ≤ 1R+(c−

n∑
i=1

xiχi) · y+
k ∀ k = 1, . . . , n, (4.5c)

1R+(c−
∑

xiχi)
n∑
i=1

(xi + y+
i)χi ≤ c. (4.5d)

and

Q2(x, χ) = min
y−∈{0,1}n

n∑
i=1

y−i χi (4.6a)

s.t. y−k ≤ xk ∀ k = 1, . . . , n, (4.6b)

y−k ≤ 1R+(
n∑
i=1

xiχi − c) · y−k ∀ k = 1, . . . , n, (4.6c)

1R+(
∑

xiχi − c)
n∑
i=1

(xi − y−i)χi ≤ c. (4.6d)

It follows E[Q(x, χ)] = E[Q1(x, χ)]− d · E[Q2(x, χ)].

Property 4: Let x̃ be a given feasible �rst-stage solution. If x̃ leads to an underload,
i.e. if for the realization χ̂ of χ we have

∑n
i=1 χ̂ix̃i ≤ c, it follows Q2(x̃, χ̂) = 0. On the

contrary, in the case of an overload, we have Q1(x̃, χ̂) = 0.

4.2.2 Computing upper bounds on the optimal solution value of
the TSKP

Given a feasible �rst-stage solution x̃, the expectation of the second-stage solution value
can be bounded (from above) by

E[Q(x̃, χ)] ≤ rmax · E

[
[c−

n∑
i=1

x̃iχi]
+

]
− d · E

[
[
n∑
i=1

x̃iχi − c]+
]

where [x]+ := max(0, x) = x · 1R+(x) (x ∈ R) and rmax = max{ri|i ∈ {1, . . . , n}}. The
right hand side of the inequality is in fact the expectation of the optimal second-stage

85

4 The Two-Stage Knapsack Problem with Full Recourse

solution value in case of continuous second-stage variables and a uniform second-stage
reward rmax. More precisely, if y+

i can take any value between 0 and 1, we could �ll
the knapsack up to the capacity in case of an underload and the expectation of Q1(x̃, χ)
would be at most rmax · E [[c−

∑n
i=1 x̃iχi]

+]. And if y−i ∈ [0, 1], we would have to pay
exactly d times the overload as additional costs in case the capacity is not respected, i.e.
E[Q2(x̃, χ)] = d · E [[

∑n
i=1 x̃iχi − c]+]. An upper bound on the optimal solution value

of the TSKP (4.4) is thus given by the optimal solution value of the following simple
recourse problem:

(SRKP) max
x∈{0,1}n\{On}

E

[
n∑
i=1

rixiχi

]
+ rmax · E

[
[c−

n∑
i=1

xiχi]
+

]
− d · E

[
[
n∑
i=1

xiχi − c]+
]

s.t. P{
n∑
i=1

xiχi ≤ c} ≥ p. (4.7a)

We can solve the SRKP (4.7) approximately by the methods proposed in chapters
2 and 3: The basic idea is to solve the corresponding Lagrangian relaxation using a
Stochastic Arrow-Hurwicz algorithm. In chapter 2 it is shown how to approximate the
gradient of the function E [[

∑n
i=1 xiχi − c]+] using the Approximation by Convolution

method. Alternatives to this approach are to use a stochastic subgradient method (see
the conclusion of chapter 2) as well as the Integration by Parts and Finite Di�erences
approaches presented in chapter 3.
In order to handle the chance-constraint using a Lagrange multiplier, let us rewrite the
constraint as follows:

p− P{
n∑
i=1

xiχi ≤ c} ≤ 0

Unfortunately, the left hand side of this inequality is generally not convex. However, this
can be achieved by further reformulating the constraint (see e.g. [LVBL98]):

p− P{
n∑
i=1

xiχi ≤ c} ≤ 0⇐⇒
n∑
i=1

xiχi + F−1(p)‖Σ1/2x‖ − c ≤ 0 (4.8)

Here Σ denotes the diagonal covariance matrix of the random vector χ. As p ≥ 0.5 and
therefore F−1(p) ≥ 0, the obtained inequality is a Second Order Cone constraint with a
convex left hand side function whose gradient on {0, 1}n \ {On} can easily be computed.
By replacing the initial chance- by this Second Order Cone constraint, we thus get a
well de�ned, convex Lagrangian problem. The problem has an expected value objective
function and can be solved using a stochastic gradient algorithm as described in chapters
2.7 and 3.18.

4.2.3 Computing lower bounds on the optimal solution value of
the TSKP

In this section we propose lower bounds on the overall solution value for a given �xed �rst-
stage decision x̃. More precisely, we bound E[Q1(x̃, χ)] (from below) as well as E[Q2(x̃, χ)]

86

4.2 The Two-Stage Knapsack Problem with normal weight distributions (TSKP)

(from above) in order to get a lower bound on the expected second-stage solution value
E[Q(x̃, χ)].
Let in the following S denote the index set of those items that have been chosen in the �rst
stage and S its complement (i.e. S = {i ∈ {1, . . . n}|x̃i = 1} and S = {i ∈ {1, . . . n}|x̃i =
0}) and de�ne rmin = min{ri|i ∈ {1, . . . , n}}.

Lower bound on the expectation of Q1

We �rst show the following:

Proposition 4.3.

E[Q1(x̃, χ)] > rmin ·

(
E

[
[c−

n∑
i=1

x̃iχi]
+

]
− p̃ · E

[
max
i∈S

χi

])
where p̃ = P{

∑n
i=1 x̃iχi ≤ c} denotes the probability of an underload.

Proof. Let us rewrite the optimal solution of the (partial) second-stage problem Q1(x̃, χ̂)
for a realization χ̂ of χ as

Q1(x̃, χ̂) =
n∑
i=1

ri(y
+)∗i χ̂i ≥ rmin ·

n∑
i=1

(y+)∗i χ̂i (4.9)

= rmin ·

(
(c−

n∑
i=1

x̃iχ̂i) +

(
n∑
i=1

(y+)∗i χ̂i − (c−
n∑
i=1

x̃iχ̂i)

))
(4.10)

where (y+)∗ is the (unknown) optimal second-stage solution vector that depends on x̃ as
well as χ̂.
In case of an underload, (c −

∑n
i=1 x̃iχ̂i) −

∑n
i=1(y+)∗i χ̂i = c −

∑n
i=1(x̃i + (y+)∗i)χ̂i is the

di�erence between the capacity and the �nal weight of the knapsack. Note that this
quantity �gures negatively in (4.10). This amount can be bounded independently of the
second-stage solution (y+)∗, as in the worst case we have to keep a weight of maxi∈S χ̂i− ε
of the knapsack unused (where ε > 0):

(c−
n∑
i=1

x̃iχ̂i)−
n∑
i=1

(y+)∗i χ̂i < max
i∈S

χ̂i (4.11)

It follows

Q1(x̃, χ̂) > rmin

(
(c−

n∑
i=1

x̃iχ̂i)−max
i∈S

χ̂i

)
(4.12)

Whenever we are in the case on an overload, Q1 is zero. We thus get:

E[Q1(x̃, χ)] > rmin

(
E

[
1R+(c−

n∑
i=1

x̃iχi)

(
(c−

n∑
i=1

x̃iχi)−max
i∈S

χi

)])

= rmin

(
E

[
[c−

n∑
i=1

x̃iχi]
+

]
− E

[
1R+(c−

n∑
i=1

x̃iχi) ·max
i∈S

χi

])

87

4 The Two-Stage Knapsack Problem with Full Recourse

In the case of independently normally distributed items, E [[c−
∑n

i=1 x̃iχi]
+] has a deter-

ministic equivalent formulation that is a linear combination of the density function and
CDF of the standard normal distribution. It can therefore be computed exactly (see e.g.
[CB98] or chapter 2). So let us see how to further bound E [1R+(c−

∑n
i=1 x̃iχi) ·maxi∈S χi]:

Claim 4.4.

E

[
1R+(c−

n∑
i=1

x̃iχi) ·max
i∈S

χi

]
≤ p̃ · E[max

i∈S
χi]

Proof of the claim: It is easy to see that

E

[
1R+(c−

n∑
i=1

x̃iχi) ·max
i∈S

χi

]
+ E

[
1R+(

n∑
i=1

x̃iχi − c) ·max
i∈S

χi

]
= E

[
max
i∈S

χi

]
so either

E

[
1R+(c−

n∑
i=1

x̃iχi) ·max
i∈S

χi

]
≤ p̃ · E[max

i∈S
χi]

or

E

[
1R+(

n∑
i=1

x̃iχi − c) ·max
i∈S

χi

]
≤ (1− p̃) · E[max

i∈S
χi]

and if one of the two inequalities is satis�ed with equality, the second would be satis�ed
with equality, as well. We further have

E[max
i∈S

χi|
n∑
i=1

x̃iχi ≤ c] ≤ E[max
i∈S

χi|
n∑
i=1

x̃iχi ≥ c]

which excludes the case that

E

[
1R+(

n∑
i=1

x̃iχi − c) ·max
i∈S

χi

]
< (1− p̃) · E[max

i∈S
χi] and

E

[
1R+(c−

n∑
i=1

x̃iχi) ·max
i∈S

χi

]
> p̃ · E[max

i∈S
χi]

Thus,

E

[
1R+(c−

n∑
i=1

x̃iχi) ·max
i∈S

χi

]
≤ p̃ · E[max

i∈S
χi]

q.e.d.

This concludes the proof.

88

4.2 The Two-Stage Knapsack Problem with normal weight distributions (TSKP)

Unfortunately, (even) in the case of independently normally distributed random vari-
ables, E[maxi∈S χi] is not easily computable. We thus bound it by discretization of the
probability space of the random variable maxi∈S χi:
Let us de�ne a new random variable χSmax := maxi∈S χi . Let Φi be the CDF of χi, and
ΦS
max the CDF of χSmax. Then one can easily show that ΦS

max =
∏

i∈S Φi.
Furthermore, if there exists a β < ∞ such that P{χSmax ∈ (−∞, β]} = 1, we can bound

E
[
χSmax

]
by splitting the interval (−∞, β] into K disjoint intervals (K scenarios) (αk, βk],

k = 1, . . . , K, and it follows

E
[
χSmax

]
≤

K∑
k=1

βkP{max
i∈S

χi ∈ (αk, βk]} =
K∑
k=1

βk(Φ
S
max(βk)− ΦS

max(αk))

Unfortunately, in the case of normally distributed weights, (theoretically) no such β exists.
However, as for every ε there exists a β such that P{∃i ∈ S|χi ≥ β} ≤ ε, we can

approximate the upper bound on E
[
χSmax

]
by de�ning β in such a way that P{∃i ∈

S|χi ≥ β} is (su�ciently) small. From a numerical point of view, ε can even be chosen
to be zero as we generally deal with distributions that have small variances (compared to
the mean) and whose density functions go to zero very fast. So we �nally get:

Corollary 4.5. Let αk, βk (k = 1, . . . , K) be de�ned as above. Then

E[Q1(x̃, χ)] > rmin

(
E

[
[c−

n∑
i=1

x̃iχi]
+

]
− p̃ ·

K∑
k=1

βk(Φ
S
max(βk)− ΦS

max(αk))

)
where p̃ = P{

∑n
i=1 x̃iχi ≤ c} denotes the probability of an underload.

�

Remark 4.6. As the item weights have been assumed to be independently normally dis-
tributed, X :=

∑n
i=1 x̃iχi is normally distributed with mean

∑n
i=1 x̃iµi and standard devia-

tion
√∑n

i=1 x̃
2
iσ

2
i . We are thus able to compute p̃ = P{X ≤ c} as well as E [[c−

∑n
i=1 x̃iχi]

+] =
E [[c−X]+].

Upper bound on the expectation of Q2

Similar to the approach presented in the previous subsection, we �rst bound E[Q2(x̃, χ)]
depending on the expected maximum �rst-stage item weight E[maxi∈S χi]. However, in
the case of an overload no claim such as Claim (4.4) can be proved.

Proposition 4.7.

E[Q2(x̃, χ)] < E

[
[
n∑
i=1

x̃iχi − c]+
]

+ E

[
1R+(

n∑
i=1

x̃iχi − c) ·max
i∈S

χi

]

89

4 The Two-Stage Knapsack Problem with Full Recourse

Proof. The proof is similar to the proof of Proposition 4.3: For a realization χ̂ of χ, let
(y−)∗ = (y−)∗(x̃, χ̂) be the corresponding optimal second-stage solution. It follows

Q2(x̃, χ̂) =
n∑
i=1

χ̂i(y
−)∗i

= (
n∑
i=1

x̃iχ̂i − c) +

(
n∑
i=1

(y−)∗i χ̂i − (
n∑
i=1

x̃iχ̂i − c)

)
∑n

i=1(y−)∗i χ̂i− (
∑n

i=1 x̃iχ̂i− c) is the amount of weight that we remove from the knapsack
in addition to the overweight. This amount can be once more bounded independently
of the second-stage solution (y−)∗, as in the worst case the knapsack weight might fall
(maxi∈S χ̂i− ε) under the capacity due to the removal of items in the second stage (where
ε > 0). Thus

n∑
i=1

(y−)∗i χ̂i − (
n∑
i=1

x̃iχ̂i − c) < max
i∈S

χ̂i (4.13)

and it follows

Q2(x̃, χ̂) < (
n∑
i=1

x̃iχ̂i − c) + max
i∈S

χ̂i (4.14)

Whenever we are in the case of an underload, Q2 is zero:

E[Q2(x̃, χ)] < E

[
1R+(

n∑
i=1

x̃iχi − c)

(
(
n∑
i=1

x̃iχi − c) + max
i∈S

χi

)]

We �nally bound E [1R+(
∑n

i=1 x̃iχi − c) ·maxi∈S χi] by discretization in the same way
as E [maxi∈S χi] has been bounded in subsection 4.2.3: under the condition that

∑
i∈S χi ≥

c, we have maxi∈S χi ≥ c/|S|. So let αck, β
c
k (k = 1, . . . , Kc) such that ∪Kc

k=1(αck, β
c
k] =

(c
|S| , β] (if c

|S| ≥ β we de�ne Kc = 0). It follows

E

[
1R+(

n∑
i=1

x̃iχi − c) ·max
i∈S

χi

]
≤

Kc∑
k=1

βck(Φ
S
max(β

c
k)− ΦS

max(α
c
k))

which leads to the following corollary:

Corollary 4.8. Let αck, β
c
k (k = 1, . . . , Kc) be de�ned as above. Then

E[Q2(x̃, χ)] < E

[
[
n∑
i=1

x̃iχi − c]+
]

+
Kc∑
k=1

βck(Φ
S
max(β

c
k)− ΦS

max(α
c
k))

�

90

4.2 The Two-Stage Knapsack Problem with normal weight distributions (TSKP)

Lower bound on the overall solution value

Combining the results from the previous subsections (corollaries 4.5 and 4.8) and as

E

[
[c−

n∑
i=1

xiχi]
+

]
= E

[
[
n∑
i=1

xiχi − c]+
]
− E

[
n∑
i=1

xiχi − c

]

we get the following lower bound on the overall solution for a given feasible �rst-stage
vector x̃:

Proposition 4.9. Let αk,βk, (k = 1, . . . , K), αck,β
c
k (k = 1, . . . , Kc) be de�ned as in the

previous two subsections. Let x̃ be a feasible �rst-stage solution. Then the following lower
bound on the corresponding overall solution value holds:

E

[
n∑
i=1

riχix̃i

]
+ E [Q(x̃, χ)] >

n∑
i=1

(ri − rmin)µix̃i + (rmin − d) · E

[
[
n∑
i=1

x̃iχi − c]+
]

+ rmin ·

(
c− p̃ ·

K∑
k=1

βk(Φ
S
max(βk)− ΦS

max(αk))

)
− d ·

Kc∑
k=1

βck(Φ
S
max(β

c
k)− ΦS

max(α
c
k))

where p̃ = P{
∑n

i=1 x̃iχi ≤ c} denotes the probability of an underload.

�

Lower bound on the optimal solution value of the TSKP in the case of similar

items

In order to tighten the lower bounds, we make the assumption that the item weights are
similar in the following sense:

Assumption 4.10. The probability of an item to have more than twice the size of another
item is zero.

In the case of normally distributed items Assumption 4.10 is theoretically never true.
However, in many practical problems the probability that the weight of an item varies
by 100% is practically zero. Hence, whenever we treat items whose means are similar,
Assumption 4.10 is practically true.

91

4 The Two-Stage Knapsack Problem with Full Recourse

Lower bound on the expectation of Q1 in the case of similar items

In the previous sections we bounded the optimal second-stage solution value depending
on the expectation of the maximum item weight among all the items that had not been
added in the �rst stage. In the case of similar items, this lower bound can be improved
due to the following lemma:

Lemma 4.11. Let ri = rj for all i, j ∈ {1, . . . , n}. Then, under Assumption 4.10, it
follows

(c−
n∑
i=1

x̃iχ̂i)−
n∑
i=1

(y+)∗i χ̂i < min
i∈S

χ̂i

Proof. If the �rst-stage items lead to an overload, the left hand side of the inequality is
negative and the lemma is true for positive item weights. So let us suppose that we are
in the case of an underload. Let T be the set of indexes such that i ∈ T if and only if
x̃i = (y+)∗i = 0.
It is clear that (c −

∑n
i=1 x̃iχ̂i) −

∑n
i=1(y+)∗i χ̂i < mini∈T χ̂i as otherwise we could have

added another item in the second stage. It follows that if (at least) one of the items with
minimum weight in S has not been added in the second stage, we are done, as in this case
mini∈T χ̂i = mini∈S χ̂i. So let mini∈S χ̂i < mini∈T χ̂i and de�ne j := arg mini∈S χ̂i as well
as j′ := arg mini∈T χ̂i. It follows that (c−

∑n
i=1 x̃iχ̂i)−

∑n
i=1(y+)∗i χ̂i+χ̂j < χ̂j′ as otherwise

we could have added item j′ instead of item j which would have increased the optimal
objective function (here we use the assumption that ri = rj for all i, j ∈ {1, . . . , n}). We
consequently get

(c−
n∑
i=1

x̃iχ̂i)−
n∑
i=1

(y+)∗i χ̂i < χ̂j′ −min
i∈S

χ̂i ≤ 2 min
i∈S

χ̂i −min
i∈S

χ̂i = min
i∈S

χ̂i

Using this lemma we can prove the following lower bound on E[Q1(x̃, χ)] in case of
similar items:

Proposition 4.12. Under Assumption 4.10, the following holds:

E[Q1(x̃, χ)] > rmin ·

(
E

[
[c−

n∑
i=1

x̃iχi]
+

]
− p̃ ·

∑
i∈S µi

|S|

)
where p̃ denotes the probability of an underload.

Proof. First of all we replace the second-stage rewards ri (i = 1, . . . , n) by rmin. This
replacement allows us to apply Lemma 4.11 and we get:

E[Q1(x̃, χ)] > rmin ·

(
E

[
1R+(c−

n∑
i=1

x̃iχi)

(
(c−

n∑
i=1

x̃iχi)−min
i∈S

χi

)])

= rmin ·

(
E

[
[c−

n∑
i=1

x̃iχi]
+

]
− E

[
1R+(c−

n∑
i=1

x̃iχi) ·min
i∈S

χi

])
The following claim is similar to Claim 4.4 (and so is its proof):

92

4.2 The Two-Stage Knapsack Problem with normal weight distributions (TSKP)

Claim 4.13. Under Assumption 4.10, the following holds:

E

[
1R+(c−

n∑
i=1

x̃iχi) ·min
i∈S

χi

]
≤ p̃ · E

[
min
i∈S

χi

]
where p̃ denotes the probability of an underload.

�

It follows:

E[Q1(x̃, χ)] > rmin ·

(
E

[
[c−

n∑
i=1

x̃iχi]
+

]
− p̃ · E

[
min
i∈S

χi

])

For any set S ⊆ {1, . . . , n}, E [mini∈S χi] can easily be bounded, as the weight of the
lightest item among all items in S is at most 1/|S| of the total weight of the items in S:

min
i∈S

χi ≤
∑

i∈S χi

|S|
(4.15)

It follows

E[min
i∈S

χi] ≤
E[
∑

i∈S χi]

|S|
=

∑
i∈S µi

|S|
which ends the proof.

The previous proposition can be generalized as follows:

Proposition 4.14. If the probability for an item to have more than k times the size of
another item is zero (k ≥ 2), it follows

E[Q1(x̃, χ)] > rmin ·

(
E

[
[c−

n∑
i=1

x̃iχi]
+

]
− p̃ · (k − 1) ·

∑
i∈S µi

|S|

)

where p̃ denotes the probability of an underload.
�

Upper bound on the expectation of Q2 in the case of similar items

The following lemma is the counterpart of Lemma 4.11 in the underload case. The proof
is similar:

Lemma 4.15. Under Assumption 4.10, the following holds:

n∑
i=1

(y−)∗i χ̂i − (
n∑
i=1

x̃iχ̂i − c) < min
i∈S

χ̂i

�

93

4 The Two-Stage Knapsack Problem with Full Recourse

Proposition 4.16. Under Assumption 4.10, the following holds:

E[Q2(x̃, χ)] < (1 +
1

|S|
)E

[
[
n∑
i=1

x̃iχi − c]+
]

+
c · (1− p̃)
|S|

where p̃ denotes the probability of an underload.

Proof. Due to Lemma 4.15 we have

E[Q2(x̃, χ)] < E

[
[
n∑
i=1

x̃iχi − c]+
]

+ E

[
1R+(

n∑
i=1

x̃iχi − c) ·min
i∈S

χi

]
Using inequality (4.15) we further have

E

[
1R+(

n∑
i=1

x̃iχi − c) ·min
i∈S

χi

]
≤ E

[
1R+(

n∑
i=1

x̃iχi − c) ·
∑n

i=1 x̃iχi
|S|

]

=
1

|S|

(
E

[
[
n∑
i=1

x̃iχi − c]+
]

+ c · (1− p̃)

)

Proposition 4.16 can be generalized as follows:

Proposition 4.17. If the probability for an item to have more than k times the size of
another item is zero (for k ≥ 2), it follows

E[Q2(x̃, χ)] < (1 +
k − 1

|S|
)E

[
[
n∑
i=1

x̃iχi − c]+
]

+
c · (1− p̃) · (k − 1)

|S|

where p̃ denotes the probability of an underload. �

Lower bound on the expectation of Q in the case of similar items

Combining the previous results from this subsection, we get the following lower bounds
on the expectation of the optimal second-stage solution value Q(x, χ):
From Propositions 4.12 and 4.16 it follows:

Proposition 4.18. Let x̃ be a feasible �rst-stage solution. Under Assumption 4.10, the
following upper bound on the corresponding overall solution value holds

E

[
n∑
i=1

riχix̃i

]
+ E [Q(x̃, χ)] ≥

n∑
i=1

riµix̃i + rmin ·

(
E

[
[c−

n∑
i=1

x̃iχi]
+

]
− p̃ ·

∑
i∈S µi

|S|

)

− d ·

((
1 +

1

|S|

)
E

[
[
n∑
i=1

x̃iχi − c]+
]

+
c · (1− p̃)
|S|

)
where p̃ denotes the probability of an underload. �

94

4.2 The Two-Stage Knapsack Problem with normal weight distributions (TSKP)

From Propositions 4.14 and 4.17 we get:

Proposition 4.19. Let x̃ be a feasible �rst-stage solution. If the probability for an item
to have more than k times the size of another item is zero (for k ≥ 2), the following upper
bound on the corresponding overall solution value holds:

E

[
n∑
i=1

riχix̃i

]
+E [Q(x̃, χ)] ≥

n∑
i=1

riµix̃i+rmin·

(
E

[
[c−

n∑
i=1

x̃iχi]
+

]
− p̃ · (k − 1) ·

∑
i∈S µi

|S|

)

− d ·

((
1 +

k − 1

|S|

)
E

[
[
n∑
i=1

x̃iχi − c]+
]

+
c · (1− p̃) · (k − 1)

|S|

)

where p̃ denotes the probability of an underload.
�

4.2.4 Branch-and-Bound Algorithm

In the previous section we proposed methods to calculate a lower bound on the objective
function value for a given �rst-stage solution x̃. However, for a bad choice of x̃ this lower
bound might be far from the optimal overall solution value.
In order to search the �rst-stage solution space for a best possible lower bound on the
overall problem (4.4), we choose a B&B framework involving the bounds proposed above.
Concerning the computation of the upper bounds that serve to evaluate subtrees, we
apply the following policy:
In [CB98], Cohn and Barnhart solve the SRKP (4.7) without the chance-constraint (4.7a),
i.e. the basic Simple Recourse Knapsack problem (basic SRKP) (or Static Stochastic
Knapsack problem). They propose very simple and fast computable upper bounds for the
basic SRKP that serve them to prune valueless subtrees in a B&B framework (see also
the numerical results of chapter 2). We use their upper bounds for the same purpose as
relaxing the chance-constraint gives us an upper bound on the SRKP and thus also on
the initial problem. If their upper bounds are not tight enough to prune the subtree that
we are currently evaluating, we solve the SRKP as proposed in section 4.2.2.
As described in [CB98] and in chapter 2 the �rst step of the B&B algorithm is to rank
the items following their value of ri/σ2

i which de�nes the binary search tree. The full
framework is presented in Algorithm 4.2.1.

4.2.5 Numerical results

The aim of this section is twofold: First of all we want to give the reader an idea of the
relative gap between the proposed upper bound and the best possible lower bound that
one can get by using the lower bounds proposed in section 4.2.3. The latter is obtained
by applying the B&B algorithm given in the previous section. The second aim is to ana-
lyze the quality of the B&B algorithm itself, i.e. the CPU-time it needs to �nd the best

95

4 The Two-Stage Knapsack Problem with Full Recourse

Branch-and-Bound Algorithm

1. Rank the items by their value of ri/σ2
i . This ranking de�nes the binary tree with

the highest ranked item at the root.
2. Set INF ← 0. De�ne L as the set of �rst-stage decisions to explore. Set L← ∅.
3. Plunge the tree to �nd the �rst �rst-stage decision x: Beginning at the root of the

tree, add the current item if and only if the lower bound on the overall objective
function value increases and the chance-constraint is still satis�ed after adding the
item. Calculate a lower bound LB(x) on the �rst-stage objective function. Set
INF ← LB(x). Add the found �rst-stage decision x to L. Set the associated upper
bound UB(x) to in�nity.

4. If L = ∅, go to step 8.
Else select x ∈ L such that x = arg maxx∈L LB(x). Go to step 5.

5. If UB(x) > INF , go to step 6.
Else remove x from L. Go to step 4.

6. If there is no accepted item left in the selected �rst-stage decision x such that the
subtree de�ned by rejecting this item has not already been plunged or rejected,
remove x from L. Go back to step 4.
Else, following our ranking, choose the �rst accepted item such that the subtree
de�ned by rejecting this item has not already been plunged or rejected. Calculate
an upper bound UB on this subtree. Go to step 7.

7. If UB ≤ INF , reject the subtree, go to step 6.
Else plunge the subtree as described in step 3 to �nd a new �rst-stage decision x̃.
Calculate LB(x̃) and set UB(x̃)← UB. Add x̃ together with the values UB(x̃) and
LB(x̃) to L. If LB(x̃) > INF , set INF ← LB(x̃).
Go to step 4.

8. The current value INF is the best lower bound for problem (4.4) that can be
obtained by the proposed method(s).

Algorithm 4.2.1

possible lower bound and the number of upper bounds it has to calculate. Obviously,
these subjects are linked as the better the quality of the upper and lower bounds, the
more subtrees are pruned during the B&B algorithm and the less upper bounds have to
be computed.
We tested our method on 50 randomly generated instances for each case and each di-
mension. In the general case the weight means were generated uniformly between 100
and 1000. For the case of similar items, we chose a normal distribution with mean 225
and variance 25 to generate the weight means (see [CB98]). We tested our method on
the problem variant with chance-constraint in the �rst stage and �xed the prescribed
probability p to 95%. The tests were carried out on an Intel PC with 2MB RAM and we
allowed a maximum average CPU-time of 1h. In the following tables, * indicates that an
average CPU-time of more than 1h would have been needed to treat all instances of this

96

4.2 The Two-Stage Knapsack Problem with normal weight distributions (TSKP)

dimension.
The following analysis of the numerical tests is divided in three parts: In the �rst part,
we study the case where, in the second stage, items can be added only. When solving the
instances with similar items we compare the general lower bounds with the lower bounds
proposed particularly for this case. In the second part, we study the problem variant
where items can be rejected only. The last part contains the numerical results for the
problem setting where items can be added in case of an underload and have to be removed
in case of an overload.
The following tables present for each set of instances the minimal gap (between upper and
best lower bound found; second column) and the maximal gap (third column) recorded
as well as the average gap (fourth column) and the standard deviation of the gaps (�fth
column). Moreover, the tables contain the average CPU-time needed by the B&B algo-
rithm (sixth column) as well as the average number of nodes considered during the B&B
algorithm (i.e. the number of computed upper bounds per run; seventh column).
For a detailed study of the stochastic gradient algorithm used to solve the continuous
problem (4.7) see the numerical results of chapters 2 and 3.

Items can only be added in the second stage

General items

n Mini-
mal
Gap

Maxi-
mal
Gap

Aver-
age
Gap

Stan-
dard

Deviat.

CPU-
time
(sec)

con-
sidered
nodes

15 3.18% 31.09% 11.41% 4.98% 0.1 29
20 2.43% 21.51% 9.35% 4.94% 0.16 38
30 2.12% 14.87% 7.02% 3.48% 0.40 70
50 1.48% 16.50% 6.82% 3.36% 55.00 6693
75 1.08% 11.02% 6.49% 2.14% 12.36 970
100 2.07% 14.29% 6.69% 2.41% 59.00 3501
150 2.30% 10.99% 6.61% 2.06% 928.02 36807
250 * * * * * *

Table 4.1: Numerical results for the TSKP : Items can only be added in the second stage
(general items)

Table 4.1 shows the results of our method for non-similar items. First of all we observe
that up to 30 items the gaps improve visibly while their diminution is less obvious for a
greater number of items.
Furthermore, we notice that the number of nodes considered during the B&B algorithm
depends not only on n, but also on the hardness of each particular instance: While for
instances with 75 and 100 items the B&B algorithm considers on average 970 and 3501
nodes, respectively, it computes on average 6693 upper bounds to solve the instances of

97

4 The Two-Stage Knapsack Problem with Full Recourse

size 50 due to one single, hard instance (230370 nodes).
When applying the general lower bounds to instances of similar items (Table 4.2) we

observe much smaller relative gaps and standard deviations compared to the general in-
stances. In addition, the minimal and the average gap are continuously decreasing for
increasing n. As a result of the tighter bounds, the B&B algorithm needs to compute less
upper bounds. As the computation of upper bounds using a stochastic gradient algorithm
is the most time consuming part of Algorithm 4.2.1 (see chapter 2), the corresponding
CPU-times are, as well, signi�cantly smaller. Given a maximum average CPU-time of 1h,
we are thus able to treat instances of more than 2000 items, contrary to 150 items in the
general case.
When comparing the performance of the algorithm that uses the general method to com-
pute lower bounds with that proposed for the special case of similar items, we notice that
the latter performs only slightly better due to insigni�cantly better lower bounds.

Items can only be rejected in the second stage

When solving instances with non-similar weight means (see Table 4.3), we �rst of all re-
mark the high average relative gap between upper and lower bound for small size items.
We assume that the dimension of the gap is essentially due to the lower bound whose
quality depends mainly on the estimation of E [1R+(

∑n
i=1 x̃iχi − c) ·maxi∈S χi] (see sub-

section 4.2.3). However, contrary to the case where items can only be added, the average
gap is continuously decreasing with increasing n and for medium size instances it is even
smaller than in the former case. We are thus able to solve instances with up to 150 items,
as well.
When applying the general method to compute lower bounds on instances with similar
items (Table 4.4), the gaps are less important for instances of small size. However, unlike
all the cases studied before, the average gap as well as the minimum gap seem to increase
with n (at least within the dimensions tested).
Contrary to the case where items can only be added in the second stage, we observe an
important improvement of the gap when replacing the general method to compute lower
bounds by the particular method for similar items. In terms of computing time, we are
now able to solve problems with up to 1000 items (and more) in less than 1h (on average).
However, a drawback of our approach is revealed: To compute upper bounds, we use a
stochastic gradient method that only computes approximate solution values of the relaxed
version of our problem. More precisely, the value obtained might be slightly smaller than
the optimum of the relaxation. Consequently, in case of large size instances with a very
small integrality gap, we cannot be sure if the upper bound computed is in fact an upper
bound on our problem. If in addition the best lower bound obtained is close to the opti-
mal solution value, we might have the strange situation that the computed upper bound
is smaller than the computed lower bound, which was the case for some of the instances
with 500 and 1000 items (Table 4.4).

98

4.2 The Two-Stage Knapsack Problem with normal weight distributions (TSKP)

Similar items, general lower bounds

n Mini-
mal
Gap

Maxi-
mal
Gap

Aver-
age
Gap

Stan-
dard

Deviat.

CPU-
time
(sec)

con-
sidered
nodes

15 2.64% 18.86% 7.11% 3.38% 0.06 14
20 1.87% 12.26% 5.46% 2.41% 0.08 17
30 1.58% 6.29% 3.05% 0.96% 0.16 25
50 0.92% 8.37% 2.09% 1.15% 0.44 47
75 0.72% 1.85% 1.28% 0.34% 0.96 73
100 0.57% 5.17% 1.07% 0.85% 1.70 97
150 0.41% 0.93% 0.65% 0.17% 4.40 170
250 0.29% 0.63% 0.43% 0.10% 14.28 335
500 0.17% 0.33% 0.25% 0.05% 68.80 809
1000 0.08% 0.19% 0.14% 0.02% 308.44 1776
2000 0.06% 0.11% 0.09% 0.01% 1927.06 5586
3000 * * * * * *

Similar items, particular lower bounds

n Mini-
mal
Gap

Maxi-
mal
Gap

Aver-
age
Gap

Stan-
dard

Deviat.

CPU-
time
(sec)

con-
sidered
nodes

15 2.39% 18.49% 6.67% 3.38% 0.06 13
20 1.73% 11.95% 5.22% 2.38% 0.06 15
30 1.42% 6.05% 2.86% 0.95% 0.14 23
50 0.83% 8.23% 1.96% 1.15% 0.42 45
75 0.60% 1.77% 1.20% 0.34% 0.88 67
100 0.50% 5.10% 1.01% 0.84% 1.62 93
150 0.37% 0.89% 0.60% 0.17% 3.96 154
250 0.26% 0.55% 0.43% 0.06% 14.24 314
500 0.16% 0.32% 0.23% 0.04% 62.86 747
1000 0.09% 0.17% 0.13% 0.02% 276.78 1633
2000 0.06% 0.11% 0.08% 0.01% 1534.18 4477
3000 * * * * * *

Table 4.2: Numerical results for the TSKP : Items can only be added in the second stage
(similar items)

99

4 The Two-Stage Knapsack Problem with Full Recourse

General items

n Mini-
mal
Gap

Maxi-
mal
Gap

Aver-
age
Gap

Stan-
dard

Deviat.

CPU-
time
(sec)

con-
sidered
nodes

15 17.77% 42.44% 27.79% 5.63% 0.30 93
20 14.18% 43.36% 23.67% 7.31% 0.84 215
30 10.15% 36.81% 21.57% 7.52% 10.44 1887
50 5.85% 23.93% 9.61% 3.95% 47.76 5408
75 4.10% 13.56% 5.97% 1.86% 142.98 11223
100 3.17% 6.53% 4.19% 0.72% 291.10 17244
150 2.13% 3.31% 2.69% 0.30% 2273.92 90672
250 * * * * * *

Table 4.3: Numerical results for the TSKP : Items can only be rejected in the second
stage (general items)

Items can be added or rejected in the second stage

Concerning the evaluation of the expected second-stage solution, this case is the most
di�cult among the three problem variants. Therefore, it is not surprising that the gaps
in the case where items can be added or rejected in the second stage are slightly higher
than in the previous cases (see Tables 4.5 and 4.6).
Concerning the instances of similar items, we observe once more a signi�cant improvement
of the results when replacing the general method by the particular one and the results
are of nearly the same quality as in the case where items can be added only. In fact, the
latter is what one could expect due to the chance-constraint, as in only 5% of the cases
items have to be rejected in the second stage.

Recapitulation of the numerical results

To summarize the above results, we assume that whenever items can be rejected in the
second stage, the lower bounds obtained by the general method are of a rather poor qual-
ity.
Furthermore, we notice that in this case the particular method for similar items signi�-
cantly improves the gap between upper and lower bound, the number of considered nodes
and the CPU-time compared to the general method. If, in addition, we allow items to be
added in case of an underload, we are able to treat instances of more than 2000 items in
an average CPU-time of less than 30min.
In contrary, in the case where items can only be added in the second stage the general
method performs on instances with similar items nearly as good as the particular one.
We deduce that Claim 4.4 and Claim 4.13 are important factors in the computation of
the general lower bounds.

100

4.2 The Two-Stage Knapsack Problem with normal weight distributions (TSKP)

Similar items, general lower bounds

n Mini-
mal
Gap

Maxi-
mal
Gap

Aver-
age
Gap

Stan-
dard

Deviat.

CPU-
time
(sec)

con-
sidered
nodes

15 8.32% 25.71% 14.84% 3.65% 0.08 27
20 6.71% 24.26% 14.42% 3.87% 0.30 77
30 9.18% 22.16% 14.99% 2.60% 2.76 495
50 10.85% 21.33% 14.85% 2.16% 69.98 7863
75 13.03% 21.22% 15.74% 2.12% 3325.820 249275
100 * * * * * *

Similar items, particular lower bounds

n Mini-
mal
Gap

Maxi-
mal
Gap

Aver-
age
Gap

Stan-
dard

Deviat.

CPU-
time
(sec)

con-
sidered
nodes

15 0.53% 8.14% 3.82% 2.32% 0.02 7
20 0.29% 7.26% 2.61% 1.78% 0.06 12
30 0.30% 3.72% 1.72% 1.03% 0.12 19
50 0.22% 2.23% 1.02% 0.62% 0.34 36
75 0.16% 1.41% 0.69% 0.38% 0.72 53
100 0.10% 1.03% 0.40% 0.27% 1.16 66
150 0.05% 0.60% 0.26% 0.18% 2.62 101
250 0.01% 0.35% 0.13% 0.11% 7.22 170
500 -0.03% 0.17% 0.04% 0.05% 25.16 300
1000 -0.06% 0.08% 0.00% 0.03% 98.68 590

Table 4.4: Numerical results for the TSKP : Items can only be rejected in the second
stage (similar items)

General items

n Mini-
mal
Gap

Maxi-
mal
Gap

Aver-
age
Gap

Stan-
dard

Deviat.

CPU-
time
(sec)

con-
sidered
nodes

15 19.67% 45.12% 28.63% 5.33% 0.72 223
20 17.66% 42.91% 27.15% 2.57% 5.86 1441
30 12.08% 32.08% 23.43% 5.43% 478.62 75234
50 * * * * * *

Table 4.5: Numerical results for the TSKP : Items can be added or rejected in the second
stage (general items)

101

4 The Two-Stage Knapsack Problem with Full Recourse

Similar items, general lower bounds

n Mini-
mal
Gap

Maxi-
mal
Gap

Aver-
age
Gap

Stan-
dard

Deviat.

CPU-
time
(sec)

con-
sidered
nodes

15 9.58% 25.05% 15.36% 3.16% 0.14 43
20 9.38% 22.38% 14.55% 2.68% 0.52 133
30 9.32% 19.23% 13.62% 1.90% 3.48 621
50 9.64% 18.10% 13.13% 1.78% 113.26 12791
75 * * * * * *

Similar items, particular lower bounds

n Mini-
mal
Gap

Maxi-
mal
Gap

Aver-
age
Gap

Stan-
dard

Deviat.

CPU-
time
(sec)

con-
sidered
nodes

15 2.92% 18.80% 6.87% 3.33% 0.04 13
20 1.90% 11.95% 5.30% 2.34% 0.06 16
30 1.59% 6.05% 2.88% 0.94% 0.14 24
50 1.06% 8.23% 1.99% 1.15% 0.42 45
75 0.78% 1.76% 1.23% 0.31% 0.90 69
100 0.62% 5.24% 1.04% 0.85% 1.62 98
150 0.45% 0.96% 0.63% 0.15% 4.32 170
250 0.30% 0.61% 0.42% 0.09% 13.68 324
500 0.19% 0.34% 0.24% 0.04% 63.48 755
1000 0.11% 0.17% 0.14% 0.02% 303.40 1797
2000 0.06% 0.11% 0.09% 0.01% 1739.30 5104
3000 * * * * * *

Table 4.6: Numerical results for the TSKP : Items can be added or rejected in the second
stage (similar items)

102

4.3 The Two-Stage Knapsack Problem with discrete weight distributions (TSKD)

4.3 The Two-Stage Knapsack Problem with discrete

weight distributions (TSKD)

4.3.1 Mathematical formulation and properties

The Two-Stage Knapsack problem studied in this section is similar to that studied in
section 4.2: The capacity c of the knapsack is assumed to be deterministic while the item
weights are random. Contrary to the previous section we assume that weight χi of item
i is discretely distributed with realizations χ1

i , . . . , χ
K
i in the K scenarios with nonzero

probabilities p1, . . . , pK . All weights are assumed to be strictly positive.
In this section we assume for instance that the �rst-stage rewards ri > 0 are independent
of the weights. The case of weight dependent rewards and penalties will be treated in
subsection 4.3.3. The second-stage rewards ri > 0 are once more assumed to be strictly
smaller than the �rst stage rewards. In case item i is removed in the second stage, an
item speci�c, �x penalty di has to be paid that is strictly greater than the reward that we
have obtained in the �rst stage. The de�nition of the decision vectors is as in section 4.2.
Contrary to the previous section we allow an exchange of items in the second stage, i.e.
items can be removed in case of an underload and can be added in case of an overload
(after having removed some other items). The resulting Two-Stage Knapsack problem
with discrete weight distributions TSKD can be formulated as follows:

The Two-Stage Knapsack Problem with discretely distributed weights (TSKD)

(TSKD) max
x∈{0,1}n

n∑
i=1

rixi +
K∑
k=1

pkQ(x, χk)

s.t. Q(x, χ) = max
y+,y−∈{0,1}n

n∑
i=1

riy
+
i −

n∑
i=1

diy
−
i (4.16a)

s.t. y+
i ≤ 1− xi, ∀ i = 1, . . . , n, (4.16b)

y−i ≤ xi, ∀ i = 1, . . . , n, (4.16c)
n∑
i=1

(xi + y+
i − y−i)χi ≤ c. (4.16d)

Properties of the TSKD

Property 1: The two-stage problem (4.16) is a relatively complete recourse problem, i.e.
for every feasible �rst-stage decision there exists a feasible second-stage decision.

Property 2: Given a �rst-stage decision and a realization of χ, solving the second-stage
problem means solving a deterministic knapsack problem: Let S ⊆ {1, . . . , n} be the index

103

4 The Two-Stage Knapsack Problem with Full Recourse

set of the �rst-stage items, and S := {1, . . . , n} \ S. Let us de�ne a new second-stage
decision vector z ∈ {0, 1}n: for i ∈ S zi = 1 indicates that item i is kept in the second
stage and for j ∈ S we set zj = 1 if item j is a second-stage item. Then, in scenario k the
second-stage problem consists in solving the following problem:

max
z∈{0,1}n

∑
i∈S

(rizi − di(1− zi)) +
∑
j∈S

rjzj

s.t.
n∑
i=1

ziχ
k
i ≤ c. (4.17a)

De�ning C := −
∑

i∈S di, the objective can be rewritten as

max
∑
i∈S

(ri + di)zi +
∑
j∈S

rjzj + C

We therefore obtain a knapsack problem with reward ri + di for the �rst-stage items (if
kept) and reward rj for an added second-stage item.

Property 3: The TSKD has a deterministic equivalent reformulation as a combinatorial
optimization problem with linear objetctive and constraints: By introducing K copies of
both the second-stage decision vector y+ and the second-stage decision vector y− (denoted
(y+)k and (y−)k, k ∈ {1, . . . , K}, respectively) and treating the second-stage constraints
for each second-stage scenario separately, one obtains the following reformulation:

max
n∑
i=1

rixi +
K∑
k=1

pk

(
n∑
i=1

ri(y
+)ki −

n∑
i=1

di(y
−)ki

)
s.t. (y+)ki ≤ 1− xi, ∀ i = 1, . . . , n, ∀ k = 1, . . . , K, (4.18a)

(y−)ki ≤ xi, ∀ i = 1, . . . , n, ∀ k = 1, . . . , K, (4.18b)
n∑
i=1

(xi + (y+)ki − (y−)ki)χ
k
i ≤ c, ∀ k = 1, . . . , K, (4.18c)

x ∈ {0, 1}n, (4.18d)

(y+)k, (y−)k ∈ {0, 1}n ∀ k = 1, . . . , K. (4.18e)

Property 4: Let AddTSKD denote the variant of TSKD (4.16) where, in the second
stage, items can only be added. The following proposition shows that this problem is a
special case of the general TSKD (4.16):

Proposition 4.20. For any instance of AddTSKD there exists an instance of TSKD with
identical optimal solution value and such that an optimal solution of the TSKD instance
is optimal solution of the AddTSKD instance, and vice versa.

104

4.3 The Two-Stage Knapsack Problem with discrete weight distributions (TSKD)

Remark 4.21. Before proving the above proposition, let us remark that AddTSKD is not
a relatively complete recourse problem, as there exist �rst-stage decisions that make the
second-stage problem (in one or more scenarios) infeasible. For these solutions we de�ne
the corresponding objective function value to be −∞. Such a solution is thus clearly not
optimal as there always exists a solution of an instance of the AddTSKD with objective
function value greater or equal than 0.
The problem of second-stage infeasibility could be arranged by adding K capacity con-
straints to the �rst stage.

Proof of Proposition 4.20. Let an instance of AddTSKD be given. We construct a corre-
sponding instance of TSKD as follows: The n-dimensional parameter vectors r, r, χk, the
probabilities pk and the capacity c are carried over to the new problem. For all i = 1, . . . , n
the penalty di is set to maxk∈{1,...,K}

ri
pk

+ 1.
Let x∗ be an optimal solution of the obtained instance of TSKD and let (y−)k = (y−)k(x)
be a corresponding optimal second-stage solution for y− in scenario k. Assume that there
exists k̃ ∈ {1, . . . , K} and i ∈ {1, . . . , n} such that (y−)k̃i = 1 (i.e. item i has been added
in the �rst stage and rejected in scenario k̃ in the second stage). Then, item i contributes
at most

ri − pk̃di = ri − pk̃(max
k

ri
pk

+ 1) ≤ ri − ri − pk̃ < 0

to the objective function value. We are thus able to increase the objective function value by
setting xi = 0, a contradiction to the assumption that x∗ is optimal. It follows that for any
optimal (�rst-stage) solution of the constructed TSKD instance all corresponding optimal
second-stage solutions are such that (y−)k̃i = 0 for all k ∈ {1, . . . , K} and i ∈ {1, . . . , n}.
An optimal solution of the TSKD is therefore feasible for the corresponding AddTSKD,
with identical objective function value. As any solution of AddTSKD is, in turn, feasible
for the TSKD instance (with identical objective function value), the proposition is proved.

Property 5: In the TSKD (4.16) the knapsack capacity is assumed to be deterministic,
i.e. identical in all scenarios. However, the formulation where the capacities are, as well,
scenario dependent (with a �nite number of outcomes) is in fact equivalent to the TSKD

(4.16) as we could simply multiply the capacity constraint by an appropriate factor in each
of the K scenarios. Note that we use here that all outcomes of the capacity are known
and that their number is �nite. In the case where the knapsack capacity is bounded from
above but has an in�nite number of possible outcomes, an equivalent reformulation with
uniform (deterministic) capacity can still be obtained by introducing an additional item
and setting the uniform capacity to a value strictly greater than the capacity's upper
bound. The random weight of the additional item is de�ned as the di�erence between the
newly de�ned, deterministic capacity and the initial, random capacity. Its outcomes are
thus always strictly positive. The reward of the additional item is de�ned in a way that
any optimal �rst-stage solution must contain this item.

105

4 The Two-Stage Knapsack Problem with Full Recourse

4.3.2 Equivalence of the AddTSKD and the MCKP

Formulation of the AddTSKD as an MCKP

The multiply-constrained knapsack problemMCKP (sometimes also called multi-dimensional
vector knapsack problem) with uniform capacities can be de�ned as:

(MCKP) max
ñ∑
i=1

r̃ix̃i

s.t.
ñ∑
i=1

x̃iw̃
j
i ≤ c̃ ∀ j = 1, . . . ,m, (4.19a)

x̃ ∈ {0, 1}ñ. (4.19b)

where w̃ji ≥ 0 and c̃, r̃i > 0 for all i ∈ {1, . . . , ñ}, j ∈ {1, . . . ,m}.
In the following MCKP stands for the multiply-constrained knapsack problem with uni-
form capacities. Note, however, that as long as the capacities are required to be strictly
positive, any multiply-constrained knapsack problem with non-uniform capacities can be
trivially reformulated as an MCKP by multiplying the capacity constraints with a cor-
responding factor.
The AddTSKD can be stated as follows:

max
x∈{0,1}n

n∑
i=1

rixi +
K∑
k=1

pk
n∑
i=1

ri(y
+
i)k

s.t. (y+
i)k + xi ≤ 1 ∀ i = 1, . . . , n, ∀ k = 1, . . . , K, (4.20a)
n∑
i=1

(xi + (y+
i)k)χki ≤ c. (4.20b)

Problem (4.20) is clearly a multiply-constrained knapsack problem (with non-uniform
capacities) with strictly positive rewards and capacities and nonnegative weights. Multi-
plying constraints (4.20a) by c > 0 would turn it in an MCKP .

Solving an instance of the MCKP via an instance of the AddTSKD

If we do not allow the rewards to be zero or negative, it is in general not possible to
equivalently reformulate the MCKP as an AddTSKD. Nevertheless, it is possible to
obtain an optimal solution for an instance of the MCKP by solving an instance of the
AddTSKD. This is the subject of the next proposition:

Proposition 4.22. Let an instance of the MCKP be given. Then, there exists an in-
stance of the AddTSKD such that an optimal (�rst-stage) solution of the latter is optimal
solution to the former.

106

4.3 The Two-Stage Knapsack Problem with discrete weight distributions (TSKD)

Proof. W.l.o.g. we assume all parameters of the given instance of theMCKP (i.e. r̃i, w̃
j
i , c̃

for all i = 1, . . . , ñ, j = 1, . . . ,m) to be integer and construct a corresponding instance of
the AddTSKD as follows:
The knapsack capacity is c̃. The �rst-stage reward of item i is r̃i. There are m second-
stage scenarios. The weight of item i in scenario j is set to w̃ji . The probabilities of the
scenarios are uniformly set to 1

m
and the second-stage rewards are �xed at 1

ñ+1
where ñ

is the number of available items for the given instance of MCKP .
Let x∗ be an optimal solution of the constructed instance of AddTSKD. Let v∗ be the
corresponding solution value. It is easy to see that bv∗c is the gain provided by the
items added in the �rst stage, as the �rst-stage solution value is always integer and the
contribution of adding items in the second stage is at most

m∑
j=1

1

m

ñ∑
i=1

1

ñ+ 1
=

ñ

ñ+ 1

which is strictly smaller than 1. Moreover, the vector x∗ is feasible for the initial instance
of the MCKP with objective function value bv∗c as for the AddTSKD any optimal �rst-
stage solution is always second-stage feasible. bv∗c is thus a lower bound on the optimal
solution value of the given MCKP instance.
Let us assume that there exists a solution x̃∗ of the givenMCKP instance with objective
function value ṽ∗ > bv∗c. As the optimal solution of the MCKP instance is integer,
we especially have ṽ∗ ≥ bv∗c + 1 > v∗. As x̃∗ is a feasible �rst-stage solution for the
constructed instance of AddTSKD (in particular, it respects the capacity constraint in
all scenarios), we have a contradiction.
It follows that any optimal �rst-stage solution of the constructed AddTSKD instance is
optimal for the givenMCKP instance. Moreover, the optimal solution value of the latter
is given by the integer part of the optimal solution value of the former.

4.3.3 Non-approximability results for the TSKD and some special
cases

The general TSKD and the AddTSKD

It has been shown in [LY99] that the multiply-constrained knapsack problem with non-
uniform capacities does not have a constant-factor approximation algorithm unless P =
NP . The authors prove this by a reduction from the maximum clique problem that
can be formulated as a multiply-constrained knapsack problem with capacity 1 in each
constraint. Their proof is thus directly applicable to theMCKP as well. The same result
would be obtained by using the above remark that the MCKP and multiply-constrained
knapsack problem with non-uniform capacities are, in fact, equivalent problems.
Based on this, we can now show the following:

Theorem 4.23. There exists no constant-factor approximation algorithm for the TSKD,
unless P = NP.

107

4 The Two-Stage Knapsack Problem with Full Recourse

Proof. Assume that P 6= NP and that there exists an algorithm A and a constant
0 ≤ α < 1 such that A �nds, in polynomial time, a solution to any instance of the TSKD

with worst case ratio α. W.l.o.g. we assume that α = 1
M

for an M ∈ N.
Let an instance of the MCKP be given. Like in the proof of Proposition 4.22 we assume
all parameters to be integer. Moreover, we multiply the objective function by M such
that any optimal solution of the given MCKP instance becomes a multiple of M .
As shown in subsection 4.3.2 we can �nd an optimal solution and the corresponding solu-
tion value of thisMCKP instance by solving a corresponding instance of the AddTSKD.
The AddTSKD can in turn be equivalently reformulated as an instance of the TSKD.
Applying algorithm A to the latter gives us therefore an approximate solution of the con-
structed instance of the AddTSKD with worst case ratio α.
Let vA be the obtained solution value and v∗ the optimal solution value of the AddTSKD,
i.e. we have vA

v∗
≥ α. Recall that by the construction in the proof of Proposition 4.22 the

integer part of the optimal solution value of the AddTSKD gives us the optimal solution
value of the initial MCKP . It follows that bv∗c is a multiple of M . We have:

bvAc+ (vA mod Z) = vA

≥ αv∗

=
1

M
(bv∗c+ (v∗ mod Z))

= b v
∗

M
c+

1

M
(v∗ mod Z))

=⇒ bvAc ≥ 1

M
bv∗c

Solving the TSKD by algorithm A thus gives us a solution of the constructed instance of
AddTSKD whose objective function value is at least an α fraction of the optimal solution
value of the initial MCKP instance. As all problem reformulations can be made in a
number of steps polynomial in the input size of the given MCKP instance, we get a
contradiction to the fact that the MCKP cannot be approximated to a constant factor
unless P 6= NP . This terminates the proof.

From the proof of the previous theorem we immediately get the following corollary:

Corollary 4.24. There exists no constant-factor approximation algorithm for the AddTSKD,
unless P = NP.

As the TSKD de�ned in this chapter is a special case of the Two-Stage Knapsack
problem with scenario dependent capacities, we also have:

Corollary 4.25. There exists no constant-factor approximation algorithm for the Two-
Stage Knapsack problem with scenario dependent capacities.

108

4.3 The Two-Stage Knapsack Problem with discrete weight distributions (TSKD)

The special case where items can only be rejected in the second stage

Let RejTSKD be the variant of the TSKD (4.16) where, in the second stage, items can
only be rejected. Similar to the case of the AddTSKD (see subsection 4.3.2) it can be
shown that any instance of the RejTSKD can be solved via a corresponding instance of
the MCKP and vice versa.

Proposition 4.26. Any instance of the RejTSKD can be equivalently reformulated as
an instance of the MCKP .

Proof. Let an instance of the RejTSKD be given. First of all we rede�ne the �rst and
second-stage decision variables:

• First-stage decision vector x̃: x̃i = 1 if and only if item i is not added in the �rst
stage

• Second-stage decision vector (ỹ)k: (ỹ)ki = 1 if and only if item i has been added in
the �rst stage and is kept in the second stage in scenario k (i.e. if and only if item
i is in the knapsack after the second-stage choice has been made)

There are three possible cases for an item i in scenario k:

• Item i is added in the �rst and kept in the second stage, i.e. x̃i = 0 and (ỹ)ki = 1.
In this case item i contributes ri to the total gain.

• Item i is added in the �rst and rejected in the second stage, i.e. x̃i = (ỹ)ki = 0. In
this case item i contributes −(di − ri) to the total gain (in scenario k).

• Item i is not added in the �rst stage, i.e. xi = 1 and (ỹ)ki = 0. In this case item i
does not contribute at all to the total gain (in any scenario).

Remark that xi = (ỹ)ki = 1 is not possible.

Based on these observations, the RejTSKD instance can be reformulated as follows:

(TSKD
2) max

K∑
k=1

pk

(
n∑
i=1

riỹ
k
i −

n∑
i=1

(di − ri)(1− x̃i − ỹki)

)

s.t.
n∑
i=1

ỹki χ
k
i ≤ c ∀ k = 1, . . . , K, (4.21a)

x̃i + ỹki ≤ 1 ∀ i = 1, . . . , n, ∀ k = 1, . . . , K, (4.21b)

x̃ ∈ {0, 1}n, (4.21c)

ỹk ∈ {0, 1}n ∀ k = 1, . . . , K. (4.21d)

109

4 The Two-Stage Knapsack Problem with Full Recourse

After removing the constant term in the objective function and multiplying the n ·K
constraints (4.21b) by c, we obtain the following multiply-constrained knapsack problem
with nonnegative weights, strictly positive rewards and uniform, strictly positive capaci-
ties:

(MCKPR) max
K∑
k=1

pk

(
n∑
i=1

riỹ
k
i +

n∑
i=1

(di − ri)(x̃i + ỹki)

)

s.t.
n∑
i=1

ỹki χ
k
i ≤ c, ∀ k = 1, . . . , K, (4.22a)

cx̃i + cỹki ≤ c, ∀ i = 1, . . . , n, ∀ k = 1, . . . , K, (4.22b)

x̃ ∈ {0, 1}n, (4.22c)

ỹk ∈ {0, 1}n ∀ k = 1, . . . , K. (4.22d)

Contrary to the AddTSKD the RejTSKD is even equivalent to the MCKP as any
instance of the MCKP can, as well, be equivalently reformulated an instance of the
RejTSKD: It is su�cient to set the second-stage penalties high enough, i.e. such that
rejecting an item in the second stage is never optimal:

Proposition 4.27. Any instance of the MCKP can be equivalently reformulated an
instance of the RejTSKD.

Let an instance of the MCKP (4.19) be given. We construct an equivalent instance of
the RejTSKD having the following parameters:

• pk = 1
m
for all k = 1, . . . ,m

• ri := r̃i for all i = 1, . . . , ñ

• dki := m · ri + 1 for all i = 1, . . . , ñ and k = 1, . . . ,m

• wki := w̃ki for all i = 1, . . . , ñ and k = 1, . . . ,m

• c = c̃

Let us denote EqTSKD the obtained instance of the RejTSKD. Clearly, any solution of
the initial MCKP instance is feasible �rst-stage solution for the EqTSKD with identical
(overall) objective function value (as no item needs to be rejected in any scenario). In
turn, any �rst-stage solution of the EqTSKD satis�es the constraints of theMCKP if no
item needs to be rejected in any of the K second-stage scenarios. The objective function
values are once more the same. It thus remains to prove the following claim:

Claim 4.28. Let (x∗1, . . . , x
∗
ñ) be an optimal �rst-stage solution of the EqTSKD and let

(y1)∗, . . . , (yñ)∗ be a corresponding optimal second-stage solution. Then (yk)∗i = 0 for all
i = 1, . . . , ñ and k = 1, . . . ,m.

110

4.3 The Two-Stage Knapsack Problem with discrete weight distributions (TSKD)

Proof of the claim. Let v∗ be the (corresponding) optimal solution value of the EqTSKD.
Suppose there exists i ∈ {1, . . . , ñ} and at least one scenario h with (yh)∗i = 1. In this case
item i contributes at most ri− 1

m
(m · ri + 1) = − 1

m
to the total expected gain. Therefore,

by not adding item i in the �rst stage we obtain a solution with objective function value
at least v∗ + 1

m
, a contradiction.

As a direct corollary of proposition 4.27 as well as the non-approximability of the
MCKP we obtain:

Corollary 4.29. There exists no constant-factor approximation algorithm for the RejTSKD,
unless P = NP.

Remark 4.30. To �nish this subsection, we would like to remark the following:
(i) As long as we require the second-stage rewards to be strictly positive, the RejTSKD

is not a special case of the TSKD: In general, we cannot reformulate an instance of the
RejTSKD as an instance of the TSKD with the same solution value, as this is the case
for the AddTSKD. However, by combining the results of this subsection with those of the
previous subsections (or by proving it with a proof similar to that of Proposition 4.22) one
can show that the optimal solution of an instance of RejTSKD can be obtained by solving
a corresponding instance of TSKD.
(ii) Nevertheless, the proof of Theorem 4.23 can be rewritten in the following way: Any
instance of the MCKP can be equivalently reformulated as an instance of the RejTSKD.
In turn, the solution of an instance of the RejTSKD can be obtained by solving a corre-
sponding instance of the TSKD.

The TSKD with weight dependent rewards and penalties

As the actual weights of the items are not known in advance, one might assume that the
rewards and penalties depend on the outcomes of the weights, i.e. instead of a reward
ri for item i, we are given the reward per weight unit (and/or the penalty per weight
unit). One might wonder, if this variant is easier to solve as the rewards and penalties
per weight unit of an item do not depend on the scenario.
Let us denote by V1TSK

D (�rst variant of the TSKD) the following problem:

(V1TSK
D) max

x∈{0,1}n

K∑
k=1

pk
n∑
i=1

riχ
k
i xi +

K∑
k=1

pkQ(x, χk)

s.t. Q(x, χ) = max
y+,y−∈{0,1}n

n∑
i=1

riχiy
+
i −

n∑
i=1

diχiy
−
i (4.23a)

s.t. y+
i ≤ 1− xi ∀ i = 1, . . . , n, (4.23b)

y−i ≤ xi ∀ i = 1, . . . , n, (4.23c)
n∑
i=1

(xi + y+
i − y−i)χi ≤ c. (4.23d)

111

4 The Two-Stage Knapsack Problem with Full Recourse

Theorem 4.31. The V1TSK
D does not admit a constant-factor approximation algorithm

unless P = NP.

Proof. The idea of the proof is the same as in case of Theorem 4.23:
First of all, the special variant of the V1TSK

D where items can only be added in the
second stage (AddV1TSK

D) can be equivalently reformulated as an instance if V1TSK
D

by choosing the second-stage penalties per weight unit di su�ciently large.
We will now see how to solve an instance of MCKP by solving a corresponding instance
of the AddV1TSK

D: First of all we recall that the solution of an instance of MCKP
can be obtained by solving a corresponding instance of AddTSKD (see subsection 4.3.2).
Let ri and ri be the �rst and second-stage reward of item i in this AddTSKD instance,
respectively. We compute factors a1, . . . , am such that for all items i of the AddTSKD

instance we have

ri =
m∑
k=1

1

m
akχ

k
i

A possible choice is of course ak = ri
χki
. In the same way we reformulate the second-stage

rewards ri as

ri =
m∑
k=1

1

m
bkχ

k
i

The so obtained reformulation of the AddTSKD is clearly an instance of AddV1TSK
D.

Like in the proof of Theorem 4.23 the existence of a constant-factor approximation al-
gorithm for the V1TSK

D would thus imply the existence of such an algorithm for the
MCKP .

The TSKD with reward dependent second-stage rewards and penalties

For some TSP s, the special case where the second-stage costs are multiples of the �rst-
stage rewards with uniform factor for all items is easier to solve than the general case (see
subsection 4.1.4).

Theorem 4.32. Let V2TSK
D denote the variant of the TSKD such that there exist a < 1

and b > 1 with ri = a · ri and di = b · ri for all i ∈ {1, . . . , n}. Then the existence of a
constant-factor approximation algorithm for V2TSK

D would imply P = NP.

Proof. The proof is again similar to that of Theorem 4.23, i.e. we show that the solution
of an instance of the MCKP can be obtained by solving a corresponding instance of the
V2TSK

D: Let once more AddV2TSK
D denote the variant of the V2TSK

D where, in the
second stage, items can only be added. By choosing b su�ciently large, an instance of
the AddV2TSK

D can be equivalently formulated as an instance of the V2TSK
D.

In addition, an instance of the MCKP can be solved via an instance of the AddV2TSK
D

in a similar way to that shown in the proof of Proposition 4.22. The factor a for the

112

4.4 Concluding remarks and future work

second-stage rewards could for example be chosen as

a =
1

n ·maxi ri + 1
=⇒

m∑
j=1

1

m

∑
i

ri =
∑
i

a · ri ≤
n ·maxi ri

n ·maxi ri + 1
< 1

4.3.4 Final Remark

The proofs of non-approximability leave the question unanswered if there might exist a
lower bound on the second-stage rewards and/or an upper bound on the second-stage
penalties such that an instance that respects these bounds admits a constant-factor ap-
proximation algorithm. For example, it is clear that if we would allow the second-stage
rewards to be equal to the �rst-stage rewards, and if in addition the number of scenarios
is polynomial in the input size, a simple 1

2
-approximation algorithm is the following: In

the �rst stage, no item is added at all and to every second-stage problem we apply the
well known 1

2
-approximation algorithm for deterministic knapsack problems. As we can-

not increase the gain by choosing items in the �rst-stage, the approximation ratio of this
algorithm is 1

2
, as well. In the same way, if the second-stage penalties are all equal to

the �rst-stage rewards, we obtain a similar constant-factor approximation algorithm by
adding all items in the �rst stage.
Especially in the case where the second-stage rewards are a �x fraction and the second
stage penalties a �x multiple of the �rst-stage rewards, one might wonder if there exists a
lower bound â on the reward factor a < 1 or an upper bound b̂ > 1 on the penalty factor b
such that for instances of the V2TSK

D with a ≥ ã and b ≤ b̃ there exists a constant-factor
approximation algorithm.

4.4 Concluding remarks and future work

In this chapter we presented results for the Two-Stage Knapsack problem with random
weights.
In the �rst part we studied the case where the random weights are independently nor-
mally distributed. We introduced a chance-constraint in the �rst stage in order to restrict
the probability of an overload, but all methods and bounds proposed are still valid if
the problem contains no such constraint. As the weights are assumed to be continuously
distributed, no practical method to exactly evaluate the expectation of the second-stage
solution value for a given �rst stage decision is known. Instead, we propose to compute
lower bounds on this expectation and we use a B&B framework in order to �nd �rst-stage
solutions that provide best possible lower bounds. For comparison, upper bounds are
computed by solving a continuous version of the problem using a stochastic gradient al-
gorithm. Special interest is given to the case where the items have similar weight means.
Numerical tests have shown that our method provides bounds with small relative gaps for
medium size instances with similar items and even near-optimal lower bounds for large

113

4 The Two-Stage Knapsack Problem with Full Recourse

size instances with similar items. However, for non-similar items the gaps are rather high,
especially when we allow items to be rejected in the second stage. Further work will
therefore primarily consist in improving the quality of the general bounds.
Furthermore, when searching for good lower bounds, one could replace the exhaustive
B&B framework by a heuristic, or stop the B&B as soon as the upper bound and best
lower bound found are su�ciantly close.
In order to evaluate the quality of the upper and lower bounds, an idea could be to ap-
ply an SAA method to the initial problem, i.e. to approximate the optimal solution by
discretization of the continuous sample space and solving the corresponding deterministic
equivalent combinatorial linear problem. However, this approach is only practicable if
already a relatively small sample is su�cient to obtain good approximations.
The second part of the chapter was dedicated to the Two-Stage Knapsack problem with
�nite number of second-stage scenarios. In this case, the problem can be equivalently
reformulated as a linear programming problem with binary decision variables and solved
with common algorithms or algorithms adapted to the special shape of the problem. How-
ever, solving the Two-Stage Knapsack problem exactly naturally becomes intractable in
case of a large number of scenarios. We therefore studied the approximability of the prob-
lem. We showed that Two-Stage Knapsack problems with �nite number of scenarios are
in fact equivalent to multiply-constrained knapsack problems. More precisely, a solution
of an instance of the former can be obtained by solving an instance of the latter, and vice
versa. All approximation results for the multiply-constrained knapsack problem therefore
also apply to the Two-Stage Knapsack problem. It follows, that the Two-Stage Knapsack
problem does not admit a constant-factor approximation algorithm, unless P = NP . We
showed, that the same holds true for the special variants where items can only be added
or rejected in the second stage, where the rewards and penalties depend linearly on the
item weights or where the second-stage rewards and penalties are a constant fraction or
multiple of the �rst-stage rewards, respectively.
An open question is if there exists a lower bound on the second-stage rewards and/or
an upper bound on the second-stage penalties such that an instance that respects these
bounds admits a constant-factor approximation algorithm. Furthermore, there might
exist approximation algorithms for the Two-Stage Knapsack problem with discretely dis-
tributed weights whose approximation ratio is not constant, but decreases e.g. with the
input size.
For a �xed number of constraints, the multiply-constrained knapsack problem admits a
PTAS (though no FPTAS) whose running time is exponential in the number of con-
straints (see e.g. [LY99]). This running time can be tractable for multiply-constrained
knapsack problems as often the number of constraints is much smaller than the number of
items. When reformulating the Two-Stage Knapsack problem studied in this chapter as
a multiply-constrained knapsack problem, the number of constraints is, however, strictly
greater than the number of items. Nevertheless, further work might consist in studying if
some of the ideas of this PTAS might be used to solve the Two-Stage Knapsack problem
(e.g. with �xed number of scenarios) approximately and to compare the performance of
this algorithm with exact solution methods.

114

4.4 Concluding remarks and future work

In the case of two-stage decision problems, the decision making process is composed of
two decisions: One while the random parameters are still unknown and one once their
actual values have been revealed. The decision maker, however, is in most cases identical
in both stages and, more importantly, the aim is the same. In the case of bilevel pro-
grams, as studied in the next chapter, the decision also consists of two parts. The main
di�erence is however that two di�erent decision makers with generally di�erent (or even
con�ictive) aims are involved. As one of the decisions is made with respect to the second
and in general not vice-versa, one speaks of "levels" rather than "stages".
Basically, bilevel programming problems are deterministic, i.e. one assumes that it is pos-
sible to predict the decision of the second party by solving a deterministic optimization
problem. In the variant that we will study in the next chapter we assume that not all of
the parameters are given deterministically. This is once more modeled by introducing a
chance-constraint. Like in the second part of this chapter, only a �nite number of possible
scenarios will be assumed. Nevertheless, the obtained problem turns out to be generally
intractable when solved exactly and we thus propose to solve a Lagrangian relaxation in
order to provide bounds on the optimal solution value.

115

5 The Stochastic Bilevel Problem

with Knapsack Chance-Constraint

5.1 Introduction

5.1.1 Bilevel Problems

Bilevel problems might arise wherever decisions have to be made by two dependent parties.
Each party aims to maximize its gain (or minimize its cost) that might depend on the
decision of the second party.
Bilevel models are chosen whenever a hierarchy is established between the two decision
makers. In a bilevel programming problem this hierarchy is re�ected by introducing
the second party's (or follower 's) decision problem as being part of the �rst party's (or
leader 's) constraints. As a consequence, the follower's decision does not depend on the
leader's constraints, while the leader has to make his decision in a way that the follower's
problem admits a �nite solution. The leader's decision problem is therefore often called
upper level problem, while the follower's decision is made at the lower level.
In general, a bilevel programming problem can be stated as follows:

(BP) max
x∈Rnx
y∈Rny

F (x, y) (5.1a)

s.t. G(x, y) ≤ 0, (5.1b)

y ∈ arg max
y∈Rny

f(x, y), (5.1c)

s.t. g(x, y) ≤ 0. (5.1d)

where x is the upper level decision vector of dimension nx (leader's decision vector) and
y is the lower level decision vector of dimension ny (follower's decision vector).
Bilevel programming problems have their origin in the so called Stackelberg game (see
[Sta52]): Stackelberg observed that it is not uncommon in economics that a certain
monopoly is given to one party (the leader) which allows it to make its decision pre-
vious to the other parties (the followers). Naturally, the followers have to make their
decisions depending on the leader's decisions. Stackelberg games are thus the counterpart
of Nash games where all players make their decision at the same time (see [Zha09] for a
study on the relations between Stackelberg and Nash games).
The �rst papers treating bilevel programming problems appeared in the seventies ([BM73])
where the problem was initially described as "Mathematical Program with Optimization

117

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint

Problems in the Constraints". The �rst reference that used the notation "bilevel" was
that of Candler and Norton [CN77] published in 1977.
For a �xed upper level decision x let us de�ne the corresponding lower level feasible set
as

Ω(x) := {y ∈ Rny |g(x, y) ≤ 0}
Based on this feasible set, one can de�ne the rational reaction set for a given upper level
decision x (i.e. the set of optimal lower level decisions for a given upper level decision) as

R(x) := {y ∈ Rny |y ∈ arg max{f(x, ŷ)|ŷ ∈ Ω(x)}}

The most important set for the understanding of bilevel programming problems is the so
called induced region, i.e. the actual feasible set of the bilevel problem:

IR := {(x, y) ∈ Rnx ×Rny |G(x, y) ≤ 0, y ∈ R(x)}

This set is usually nonconvex and might even be disconnected or empty.
Most of the references on bilevel programming problems treat so called Convex Bilevel
problems (CBL). CBL's are bilevel problems where the follower's problem is a convex op-
timization problem. Note that this property does not imply the convexity of the induced
region. A great advantage of CBLs is, however, that they can often be equivalently refor-
mulated as a single level optimization problem by making use of the Karush-Kuhn-Tucker
conditions for the follower's problem. Clearly, to apply this approach some additional reg-
ularity condition(s) need to be satis�ed (see for example [Dem02]).
The most simple variant of bilevel problems is the general linear bilevel problem (GLBP).
In this problem both objective functions depend linearly on the decision vectors, all con-
straints are linear and the decision variables are continuous. However, even this simplest
problem variant is strongly NP-hard (by a reduction from the linear minmax problem,
see [FP01],[HJS92]) and many combinatorial optimization can be equivalently rewritten
as a GLBP ([MS05]). The GLBP can be stated as follows:

(GLBP) max
x∈Rnx

ct1x+ dt1y (5.2a)

s.t. A1x+B1y ≤ b1, (5.2b)

x ≥ 0, (5.2c)

y ∈ arg max
y∈Rny

ct2x+ dt2y, (5.2d)

s.t. A2x+B2y ≤ b2, (5.2e)

y ≥ 0. (5.2f)

The GLBP is probably the most studied variant of bilevel programming problems. It
can be shown that the GLBP is an optimization problem that consists of maximizing the
linear function ct1x+ dt1y over a piecewise linear constraint region (see [Bar84]). It is thus
clear that the GLBP is generally nonconvex.
Another particular and well-studied variant of bilevel programming problems are linear-
quadratic bilevel problems that consist of a linear upper and (convex) quadratic lower level

118

5.1 Introduction

problem.
More details about bilevel programming can be found in the books by Shimizu et al.
[SIB97], Bard [Bar98], the most recent book on bilevel programming by Stephan Dempe
[Dem02] as well as in the several surveys on bilevel programming, e.g. [VC94], [Dem03]
or [CMS07].

5.1.2 Stochastic Bilevel Problems and Bilevel Problems with
Knapsack Constraint

In this chapter we will consider a linear bilevel problem that, in the upper level, contains
a knapsack chance-constraint of the following form:

P{wt(χ)x ≤ s(χ)} ≥ (1− α) (5.3)

where χ is a random vector.
Single level problems with knapsack chance-constraint have been studied in chapter 3.
The interpretation of the chance-constraint is the same in both chapters: We are given
a (deterministic or random) resource s(χ) (for example an available capacity) as well as
a set of demands wt(χ)i (for example items to pack in a knapsack or routing demands
in a network). Due to the randomness of the demands (and eventually the resource) we
cannot be sure if our decision x will respect the knapsack constraint wt(χk)x ≤ s(χk) in
case χ has the outcome χk. The assumption that a violation of the knapsack constraint
is acceptable in at most a fraction α of all possible scenarios can, however, be modeled
by the chance-constraint (5.3). Introducing a chance-constraint in the upper level of a
bilevel problem thus models the case where the decision of the leader has to be made
under uncertainty of certain demands (for example of the follower). To the best of our
knowledge this is the �rst work on a chance-constrained bilevel problem or a stochastic
bilevel problem with knapsack constraint and random parameters in the leader's problem.
Dempe and Richter [DR00] studied in their paper a deterministic bilevel problem with
knapsack constraint. In their version of the problem, the decision of the leader consists
in choosing the (one-dimensional) right hand side of the knapsack constraint (i.e. the
capacity of the knapsack). Depending on this value, the follower has to solve a common
knapsack problem. Both capacity and lower level decision appear linearly in the leader's
objective function. The di�culty of this problem lies in the fact that even a slight per-
turbation of the right hand side of a knapsack constraint in an optimization problem can
lead to an optimal solution that is arbitrary far from any optimal solution of the initial
problem. Recently Brotcorne et al. [BHM09] studied the same problem. They show that
by using a dynamic programming approach the bilevel knapsack problem can be solved
with a surprisingly not much greater time requirement than needed to solve a common
single level knapsack problem.
The study of stochastic bilevel problems is rather recent and only few references are avail-
able that treat this special case of stochastic optimization problems.
In 1997 Patriksson and Wynter wrote a technical report on "Stochastic nonlinear bilevel
programming" [PW97]. In their work, they consider the follower's problem to contain

119

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint

random parameters in the objective. The problem is modeled as a two-stage problem. In
[PW99] the authors extended their work to the more general case of "Stochastic mathe-
matical programs with equilibrium constraints". They study the feasibility of the lower
level problem as well as convexity properties.
A complementary point of view is taken in [Wer04]. Instead of extending a deterministic
bilevel problem to a stochastic one by assuming some of the parameters to be uncertain
(stochastic bilevel program), the authors point out that the follower's decision can be seen
as a special kind of uncertainty to the leader's problem (stochastic program with bilevel
structure). Additional random parameters might occur in the upper and/or lower level
problem. As an example, they study the case where the upper level problem is a two-
stage problem whose second stage is, however, independent of the follower's decision. The
lower level problem is a single-stage stochastic optimization problem with expected value
objective function.
A very recent publication concerning stochastic bilevel problems is that of Özaltin et al.
[OPS10]. The authors solve a stochastic version of the bilevel knapsack problem afore-
mentioned (see [DR00],[BHM09]). As in the works by Patriksson and Wynter the authors
of [OPS10] assume the uncertainty to occur in the lower level problem. More precisely,
they assume that the right hand side of the knapsack constraint in the lower level does
not only depend on the leader's decision but also on a random vector. Both upper and
lower level decision variables are required to be binary.

5.1.3 Solving Bilevel Problems

Solution algorithms for bilevel problems can be divided in two classes: On the one hand,
there are those algorithms that are designed to �nd the global optimum of the problem.
Most of the problems that can be solved with these algorithms have a linear upper level
and linear or convex quadratic lower level problem. On the other hand, there are those
algorithms that can be used for bilevel programming problems with nonconvex lower level
problem, but that might only �nd a local optimum.
For the special case of the GLBP one can show that the set of optimal solutions (if
nonempty) contains at least one vertex of the polyhedron {(x, y) ∈ Rnx×Rny |A1x+B1y ≤
b1, A2x+ B2y ≤ b2} (see [Sav89]). This property gave rise to several vertex enumeration
algorithms such as presented in [CT82] and [BK84]. Note that linear-quadratic bilevel
problems do not have this property.
If the lower level problem is convex and satis�es some suitable regularity conditions, the
bilevel problem can be reformulated as an equivalent single level problem. The added com-
plementary constraints, however, make the obtained problem hard to solve. To overcome
this problem, a B&B algorithm might be considered that branches on these constraints:
While in the left subtree an additional constraint is added that forces one of the lower
level constraints to be satis�ed with equality, one sets the corresponding dual variable to
zero in the right subtree. One of the �rst references where this idea is applied to bilevel
programming problems is [BF82]. While the authors of this reference only treat the case
of linear bilevel problems, the method has been adapted to the quadratic ([Bar88]) and

120

5.1 Introduction

linear-quadratic ([BM90]) case in subsequent publications.
Another type of algorithm for bilevel problems that is based on the single level reformula-
tion is the complementary pivot algorithm. Complementary pivot algorithms are known
from linear programming and serve to solve linear complementary problems. The name
of the algorithm directly indicates its functioning: Complementary pivot algorithms are
pivot algorithms like the simplex algorithm. However, the exchange of basic variables
follows a special structure: The leaving variable is always the complement of the entering
variable. Applying a complementary pivot algorithm to the single level reformulation of
the GLCP (that has been obtained by adding the primal, dual and complementary slack-
ness constraints of the follower's problem to the upper level) is thus a natural idea. The
�rst such algorithm for bilevel programming was proposed by Bialas et al. [BKS80] in
1980. However, the authors admitted in a subsequent paper that the proposed algorithm
might not �nd an exact solution of the problem in all cases (see [BK84] and the given
(counter-)example in [BAB90]). Later Júdice and Faustino proposed an algorithm based
on the same principle of complementary pivoting for linear ([JF88],[JF88]) and linear-
quadratic bilevel problems ([JF94]).
Contrary to the above algorithms, descent and penalty function methods are generally
only capable of �nding local optima or stationary points.
The problem of applying descent methods to bilevel problems lies in the NP-hardness
of determining the steepest decent direction, even in case of linear bilevel programming
problems (see [OZ95]).
Some of the decent direction approaches proposed in the literature rely on the idea of
computing a gradient (or subgradient) of the so called implicit function y(x), that, for
the BP , is de�ned as

y(x) = arg max{f(x, ŷ)|ŷ ∈ Ω(x)}

Knowing the gradient of the implicit function, the gradient of the objective function of
the BP is given by

∇xF (x, y(x)) = ∇xF (x, y) +∇yF (x, y)∇xy(x)

An approximation for this gradient has been proposed in [KL90].
The main idea of penalty function methods is to include the upper level constraints into
the upper level objective function and the lower level constraints into the lower level
objective function using an exact penalty factor (see e.g. [IA92]). Variants work with
the Karush-Kuhn-Tucker single level reformulation ([LHZ01]) or use the duality gap of
the lower level problem as penalty function in the upper level objective (see for example
[WA93] or [MZ96]).

5.1.4 Solving Stochastic Bilevel Problems

As abovementioned, only few references on stochastic bilevel programs are available. In
[PW99] the authors study a nonlinear stochastic bilevel problem with uncertainties in the
lower level problem that are handled with a two-stage model. The authors point out that

121

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint

the problem is in general nonconvex and thus propose a heuristic gradient descent based
algorithm that searches for local minima.
In [Wer04] the authors present a method to solve a stochastic bilevel problem with recourse
in the upper level. They �rst replace the lower level problem by adding the corresponding
Karush-Kuhn-Tucker optimality conditions to the upper level program (under the needed
assumptions). The obtained problem is then solved using a variant of the Stochastic
Arrow-Hurwicz algorithm (see chapters 2 and 3): The Karush-Kuhn-Tucker conditions
are included in the objective by introducing Lagrange multipliers. The so obtained La-
grangian dual (with recourse) is then solved using a stochastic gradient algorithm. Upper
level feasibility is assured using a projection method. The second-stage problem is solved
at each iteration for an independently drawn sample of the random variables.
In [OPS10] the authors solve a stochastic bilevel problem with knapsack constraint. Con-
trary to our model, the knapsack constraint is part of the lower level problem and only
the capacity is assumed to be random (and dependent on the leader's decision), not the
item weights. Moreover, the knapsack constraint is the only constraint in the lower level.
The authors �rst develop a branch-and-backtrack algorithm that evaluates the lower level
solution for a given right hand side. Their �rst approach to solve the overall problem is
to evaluate the lower level problem for all the possible outcomes of the knapsack capac-
ity. As an alternative for this exhaustive search they propose a branch-and-cut algorithm
based on the L-shaped algorithm for stochastic problems with integer recourse and binary
�rst-stage decisions by Laporte and Louveau ([LL93]) (see also the introduction of chap-
ter 4). The authors show that using their branch-and-backtrack algorithm to solve lower
level problems is much more e�cient than using a commercial solver for linear integer
problems.
Throughout this chapter, we assume the probability distributions of the random variables
to be discrete. In case of continuous probability distributions, our assumption and the
resulting problem reformulations might nevertheless be helpful as one could approximate
the probability space by generating a �nite number of representative scenarios. From a
theoretical point of view, assuming a �nite sample space has the advantage that the ini-
tial chance-constrained bilevel problem can be reformulated as a deterministic equivalent
problem by treating the constraints for every scenario separately. In our case this leads
to a mixed integer linear bilevel problem (MILBP).
MILBP s have been studied in [VSJ96] and the authors show that in case the integer
variables only appear in the upper level, the problem can be equivalently reformulated
as a linear bilevel problem (LBP). In [FAM81] the authors show how to further convert
an LBP into a single level, bilinear program. We apply both techniques to our problem.
However, our aim is not to solve the resulting quadratic problem exactly, which could for
example be achieved by reformulating the problem as an MIP (see [FAM81]) or by using
other quadratic programming methods. Instead, we propose upper bounds by relaxing
the bilinear constraints in the objective function. This results in a bilinear minmax prob-
lem of the following form: The constraints are linear and separable, i.e. there exists a
partition of the variables that also partitions the constraints into two disjoint sets. When
�xing one of these sets of variables, the resulting problem is either a linear minimization,

122

5.2 Mathematical formulation and an illustrative example

or maximization problem.
Bilinear problems of this type have been studied in the literature (see [HT96]). However,
to the best of our knowledge all these studies concerned pure minimization (resp. maxi-
mization) problems known as bilinear programming problems with disjoint (or separable)
constraints. Due to the structure of these problems it is obvious why the decomposition
of the initial problem is the basis of most solution methods. By simply iteratively solv-
ing the two subproblems (or the primal of one and the dual of the other) one, however,
cannot ensure global convergence. The most common approaches to guarantee that the
algorithm converges towards a global maximum are cutting plane ([Kon76],[SS80]) and
B&B ([Fal73],[AKF83]) methods (for a survey see e.g. [AK90] or [FV94]). A more de-
tailed overview will be given in section 5.8.1.
As in our case one of the subproblems is a maximization, while the other is a minimiza-
tion problem, we propose a minmax scheme that alternately solves the two problems.
The convergence to the global optimum of the bilinear minmax problem is ensured by
continuously introducing new cuts to both problems. To the best of our knowledge, such
an algorithm has not yet been proposed in the literature.
There has been an extensive research on minmax problems. A paper that treats a minmax
problem with a similar structure to our problem is [Pan93]: As in our case, the studied
minmax problem has separable linear constraints and a quadratic objective function. The
solution procedure proposed is a �nite iteration method that, at each iteration, solves a
quadratic subproblem. Although we cannot guarantee that our algorithm �nds an opti-
mal solution in a �nite number of iterations (we can only guarantee an ε-optimal solution
after �nitely many steps), its advantages are the simple structure and the fact that we
have to solve two linear programming problems per iteration, instead of one quadratic.

5.2 Mathematical formulation and an illustrative

example

The problem that we study in this chapter has the following form: In the upper level
the leader wants to maximize its bene�ts that are linear in the upper as well as lower
level decision variables. The upper level constraint set contains linear constraints as well
as one single knapsack chance-constraint. While the former depend on both upper and
lower level variables, the latter only depends on the upper level decision variables. The
methods and results presented in this chapter are however easily adaptable to the case
where the chance-constraint also contains the follower's decision variables. In addition to
the coe�cients that multiply the decision variables in the knapsack constraint ("weights"),
we assume the right hand side ("capacity") to be random, as well. All random variables
depend on a random vector χ that is assumed to only have a �nite number of possible

123

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint

outcomes.

(SLBP) max
x

ct1x+ dt1y (5.4a)

s.t. A1x+B1y ≤ b1, (5.4b)

P{wt(χ)x ≤ s(χ)} ≥ (1− α), (5.4c)

Onx ≤ x ≤ 1nx , (5.4d)

y ∈ arg max
y

ct2x+ dt2y, (5.4e)

s.t. A2x+B2y ≤ b2, (5.4f)

y ≥ 0. (5.4g)

where c1, c2,∈ Rnx , d1, d2 ∈ Rny , A1 ∈ Rm1×nx , B1 ∈ Rm1×ny , b1 ∈ Rm1 , A2 ∈ Rm2×nx ,
B2 ∈ Rm2×ny , b2 ∈ Rm2 and 0 < α ≤ 1.
Let us now illustrate this general model with a real-world application: A mobile phone or
internet provider grants capacities on a network to multiple customers, who maximize their
pro�t (5.4e) while routing their demand on the provider's network (5.4f). The follower's
maximization reduces to choosing between the leader and the competition. Each client
is entitled to a given bandwidth, which is modeled by x. The leader charges clients so
as to obtain an optimal trade-o� between the number of clients and prices (5.4a). To do
so, the leader must take into account the prices of the competition but also the capacity
s(χ) of its network. However, typically, customers use only a fraction w(χ) of the granted
capacity. Therefore it is often the case that the network is not fully utilized. To further
optimize the load of the network, it is possible to use stochastic knapsack constraints
(5.4c) to allow an overbooked network with a given risk of overload.

5.3 From the SLBP to the (Deterministic Equivalent)

Linear Bilevel Problem (LBP)

Let χ1, ..., χK denote the K outcomes of the discretely distributed random vector χ and
de�ne pk := P{χ = χk} with

K∑
k=1

pk = 1, pk > 0.

For each scenario χk (k = 1, . . . , K) we introduce an auxiliary binary variable zk as follows:

zk =

{
0 if the scenario is considered
1 otherwise

We shall simplify the notations by de�ning for all k = 1, . . . , K:

wk := w (χk) , sk := s (χk) , w
k :=

(
wk1 , ..., w

k
n

)

124

5.3 From the SLBP to the (Deterministic Equivalent) Linear Bilevel Problem (LBP)

For all k = 1, . . . , K, we de�ne Mk such that

Mk :=
nx∑
i=1

wki − sk

Thus, the SLBP can be reformulated as the following mixed integer optimization problem:

(MILBP) max
x,z

ct1x+ dt1y

s.t. A1x+B1y ≤ b1, (5.5a)

wtkx ≤ sk +Mkzk ∀ k = 1, . . . , K, (5.5b)

ptz ≤ α, (5.5c)

Onx ≤ x ≤ 1nx , (5.5d)

z ∈ {0, 1}K , (5.5e)

y ∈ arg max
y

ct2x+ dt2y, (5.5f)

s.t. A2x+B2y ≤ b2, (5.5g)

y ≥ 0. (5.5h)

Constraints (5.5b) ensure that, if scenario χk is not covered (i.e. zk = 1), then the adopted
strategy x does not have to respect the knapsack constraint for this scenario. However,
as per constraint (5.5c), the probability of occurrence of the uncovered scenarios must be
below the risk α.
Note that

wtkx ≤ sk +Mzk ∀ k = 1, . . . , K

with M = maxk=1,...,KMk is a more frequent manner than (5.5b) to rewrite knapsack
chance-constraints. However, allowing the Mk values to be di�erent for constraints (5.5b)
yields tighter LP-relaxations (see also [LLH09]).
As shown in [VSJ96], we can now reformulate the mixed integer bilevel problem (5.5) as

125

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint

a linear bilevel problem:

(LBP) max
x,z

ct1x+ dt1y

s.t. A1x+B1y ≤ b1, (5.6a)

wtkx ≤ sk +Mkzk ∀ k = 1, . . . , K, (5.6b)

ptz ≤ α, (5.6c)

Onx ≤ x ≤ 1nx , (5.6d)

OK ≤ z ≤ 1K , (5.6e)

v = 0, (5.6f)

(y, v) ∈ arg max
y,v

ct2x+ dt2y + (1K)tv, (5.6g)

s.t. A2x+B2y ≤ b2, (5.6h)

v ≤ z, (5.6i)

v ≤ 1K − z, (5.6j)

y ≥ 0. (5.6k)

where dim(v) = dim(z) = K. The term (1K)tv in the lower level objective function forces
v to be equal to min(1K − z, z) (see Proposition 5.2). Note that the vector 1K could be
replaced by any vector with strictly positive components.

De�nition 5.1. We denote (x̃, z̃, ỹ) (resp. (x̃, z̃, ỹ, ṽ)) a feasible solution for problem
(5.5) (resp. problem (5.6)) if all upper and lower level constraints are satis�ed. A rational
solution of problem (5.5) (resp. (5.6)) is a feasible solution such that ỹ (resp. (ỹ, ṽ)) is
optimal for the lower level problem with parameters x̃ and z̃.

Proposition 5.2 (see Proposition 3.2. of [AHJS97]).

1.) Let (x∗, z∗, y∗, v∗) be a rational optimal solution of the LBP (5.6).
Then v∗ = 0 and (x∗, z∗, y∗) is a rational optimal solution of the MILBP (5.5).

2.) Let (x∗, z∗, y∗) be a rational optimal solution of the MILBP (5.5).
Then (x∗, z∗, y∗, 0) is a rational optimal solution of the LBP (5.6).

5.4 From the LBP to the Global Linear

Complementarity Problem (GLCP)

We will now continue the transformation process by reformulating the LBP as a single
level quadratic problem as described in [AHJS97]. The idea is to replace the lower level
problem by a set of constraints that contain (i) the initial constraints of the lower level
problem and (ii) the complementary slackness conditions of the lower level problem. The
latter ensures that an optimal solution of the obtained single level problem is also optimal
for the LBP . The decision vectors of the new problem are both the decision vectors of

126

5.4 From the LBP to the Global Linear Complementarity Problem (GLCP)

the upper and lower level problems as well as the dual variables of the latter.
Let us �rst state the dual of the follower's problem (5.6g)-(5.6k):

(DFP) min
λ,µ1,µ2

λt(b2 − A2x) + µ1z + µ2(1K − z),

s.t. (B2)tλ ≥ d2, (5.7a)

IKµ1 + IKµ2 ≥ 1K , (5.7b)

λ, µ1, µ2 ≥ 0. (5.7c)

where λ ∈ Rm2 (resp. µ1 ∈ RK , µ2 ∈ RK) is the dual decision vector associated with
(5.6h) (resp. (5.6i), (5.6j)). We also need the corresponding complementary slackness
conditions to ensure the optimality of the DFP :

λt(b2 − A2x−B2y) = 0 yt((B2)tλ− d2) = 0

µt1(z − v) = 0 vt(IKµ1 + IKµ2 − 1K) = 0

µt2(1K − z − v) = 0

We obtain the following equivalent Global Linear Complementarity problem (GLCP)
which is no longer a bilevel problem [AHJS97]:

(GLCP) max
x,y,z,λ,µ1,µ2

ct1x+ dt1y

s.t. A1x+B1y ≤ b1, (5.8a)

wtkx ≤ sk +Mkzk ∀ k = 1, . . . , K, (5.8b)

ptz ≤ α, (5.8c)

A2x+B2y ≤ b2, (5.8d)

(B2)tλ ≥ d2, (5.8e)

IKµ1 + IKµ2 ≥ 1K , (5.8f)

λt(b2 − A2x−B2y) = 0, (5.8g)

µt1z = 0, (5.8h)

µt2(1K − z) = 0, (5.8i)

yt((B2)tλ− d2) = 0, (5.8j)

Onx ≤ x ≤ 1nx ,OK ≤ z ≤ 1K , (5.8k)

y, λ, µ1, µ2 ≥ 0. (5.8l)

Note that in this formulation the decision variable v has been eliminated due to the fact
that v = 0.
All reformulations are equivalent so far, i.e. by solving the quadratic problem (5.8) we
get an optimal solution to the initial stochastic bilevel problem (5.5) (provided that the
probability space is discrete). Solving a generally nonconvex problem such as (5.8) directly
is hard. Instead, we propose a method to compute upper bounds by relaxing it into a
linear minmax problem.

127

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint

5.5 Calculating upper bounds

We relax the quadratic terms (5.8g), (5.8h), (5.8i) and (5.8j) of the GLCP into the
objective function:

L(x, y, z, λ, µ1, µ2) = ct1x+ dt1y + λt(b2 − A2x−B2y) + µt1z + µt2(1K − z) + yt((B2)tλ− d2)

Then the Lagrangian relaxation of the GLCP (5.8) becomes

(LGN) min
λ,µ1,µ2

max
x,y,z

L(x, y, z, λ, µ1, µ2)

s.t. A1x+B1y ≤ b1, (5.9a)

wtkx ≤ sk +Mkzk ∀ k = 1, . . . , K, (5.9b)

ptz ≤ α, (5.9c)

A2x+B2y ≤ b2, (5.9d)

(B2)tλ ≥ d2, (5.9e)

IKµ1 + IKµ2 ≥ 1K , (5.9f)

Onx ≤ x ≤ 1nx ,OK ≤ z ≤ 1K , (5.9g)

y, λ, µ1, µ2 ≥ 0. (5.9h)

Proposition 5.3. Let (x∗, y∗, z∗, λ∗, µ∗1, µ
∗
2) be an optimal solution of the LGN .

Then L(x∗, y∗, z∗, λ∗, µ∗1, µ
∗
2) is an upper bound on the optimal solution value of the GLCP

(5.8).

Proof. Let (x̃, ỹ, z̃, λ̃, µ̃1, µ̃2) denote an optimal solution of the GLCP (5.8). As

b2 − A2x̃−B2ỹ ≥ 0

(B2)tλ∗ − d2 ≥ 0

ỹ, λ∗, µ∗1, µ
∗
2 ≥ 0

0 ≤ z̃ ≤ 1

we have
ct1x̃+ dt1ỹ ≤ L(x̃, ỹ, z̃, λ∗, µ∗1, µ

∗
2)

and as (x∗, y∗, z∗, λ∗, µ∗1, µ
∗
2) is optimal for the LGN we also have

L(x̃, ỹ, z̃, λ∗, µ∗1, µ
∗
2) ≤ L(x∗, y∗, z∗, λ∗, µ∗1, µ

∗
2)

The LGN has the nice property that by �xing either the primal or the dual variables, we
obtain a linear problem. This property gives rise to the idea to decompose the LGN and
to apply an iterative minmax scheme to practically solve the relaxation. More precisely,
at iteration N ≥ 1 we solve the following two linear problems:

128

5.5 Calculating upper bounds

• The Lagrangian subproblem LGNs(N), maximized over the primal variables.

• Problem LGNd(N), which is mainly composed of the DFP (5.7) (with additional
constraints).

At each iteration of the scheme, an auxiliary constraint is added to both problems in order
to enforce the convergence of their optimal solution values towards the optimal solution
value of the LGN . Remark that the so obtained decrease (resp. increase) of the objective
function value of the LGNs (resp. LGNd) is only monotonic. In section 5.6 this matter
is further discussed and we propose a method to obtain even strict convergence at each
iteration.
The iteration process stops when β − γ < δ or (β − γ)/β < ε for small δ > 0 and ε > 0.

(LGNs(N))

max
β,x,y,z

β

s.t. A1x+B1y ≤ b1,

β ≤ L(x, y, z, λq, µq1, µ
q
2)

∀ q = 0, . . . , N − 1, (5.10a)

wtkx ≤ sk +Mkzk

∀ k = 1, . . . , K, (5.10b)

ptz ≤ α, (5.10c)

A2x+B2y ≤ b2, (5.10d)

Onx ≤ x ≤ 1nx , (5.10e)

OK ≤ z ≤ 1K , (5.10f)

y ≥ 0. (5.10g)

(LGNd(N))

min
γ,λ,µ1,µ2

γ

s.t. γ ≥ L(xq, yq, zq, λ, µ1, µ2)

∀ q = 1, . . . , N, (5.11a)

(B2)tλ ≥ d2, (5.11b)

IKµ1 + IKµ2 ≥ 1K , (5.11c)

λ, µ1, µ2 ≥ 0. (5.11d)

where N ≥ 1 is the iteration number, (xq, yq, zq) is an optimal solution of problem
LGNs(q) (q = 1, . . . , N), (λq, µq1, µ

q
2) is feasible for the LGN if q = 0 and it is an optimal

solution of problem LGNd(q) if q ≥ 1. In the reminder of this chapter we will use the
following notation:

N1: X ⊆ Rnx+ny+K
+ denotes the set of triples (x, y, z) feasible for the LGN

N2: Λ ⊆ Rm2+2K
+ denotes the set of triples (λ, µ1, µ2) feasible for the LGN

N3: (βN , xN , yN , zN) denotes an optimal solution of problem LGNs(N)

N4: (γN , λN , µN1 , µ
N
2) denotes an optimal solution of problem LGNd(N)

129

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint

Using the �rst two notations, problems (5.10) and (5.11) of the iterative minmax scheme
can be stated equivalently as

(LGNs(N)) max
(x,y,z)∈X

min
q∈{0,...,N−1}

L(x, y, z, λq, µq1, µ
q
2)

(LGNd(N)) min
(λ,µ1,µ2)∈Λ

max
q∈{1,...,N}

L(xq, yq, zq, λ, µ1, µ2)

We directly get the following properties:

P1: βN = max(x,y,z)∈X minq∈{0,...,N−1} L(x, y, z, λq, µq1, µ
q
2)

P2: βN = minq∈{0,...,N−1} L(xN , yN , zN , λq, µq1, µ
q
2)

P3: ∃ jN ∈ {0 . . . N − 1} s.t. βN = (xN , yN , zN , λjN , µjN1 , µjN2)

P4: γN = min(λ,µ1,µ2)∈Λ maxq∈{1,...,N} L(xq, yq, zq, λ, µ1, µ2)

P5: γN = maxq∈{1,...,N} L(xq, yq, zq, λN , µN1 , µ
N
2)

P6: ∃ iN ∈ {1, . . . , N} s.t. γN = L(xiN , yiN , ziN , λN , µN1 , µ
N
2)

In the following, we will keep the notations jN and iN introduced in P3 and P6.

5.5.1 Proving upper and lower bounds

Problems LGNs(N) and LGNd(N) provide upper and lower bounds on the minmax
relaxation (5.9), respectively:

Lemma 5.4. Let N ≥ 1. Then γN is a lower bound on the optimal solution value of the
LGN .

Proof. As (xq, yq, zq) ∈ X for all q = 1, . . . , N , we have for all (λ, µ1, µ2) ∈ Λ

max
(x,y,z)∈X

L(x, y, z, λ, µ1, µ2) ≥ max
q=1,...,N

L(xq, yq, zq, λ, µ1, µ2)

It follows

min
(λ,µ1,µ2)∈Λ

max
(x,y,z)∈X

L(x, y, z, λ, µ1, µ2) ≥ min
(λ,µ1,µ2)∈Λ

max
q=1,...,N

L(xq, yq, zq, λ, µ1, µ2) = γN

which proves the lemma.

Lemma 5.5. Let N ≥ 1. Then βN is an upper bound on the optimal solution value of
the LGN .

130

5.5 Calculating upper bounds

Proof. As L(x, y, z, ·, ·, ·) is linear for all (x, y, z) ∈ X and L(·, ·, ·, λ, µ1, µ2) is linear for all
(λ, µ1, µ2) ∈ Λ and X as well as Λ are compact convex sets, it follows by von Neumanns's
minimax theorem ([vN28],[Sio58]) that

min
(λ,µ1,µ2)∈Λ

max
(x,y,z)∈X

L((x, y, z, λ, µ1, µ2) = max
(x,y,z)∈X

min
(λ,µ1,µ2)∈Λ

L(x, y, z, λ, µ1, µ2)

As

βN = max
(x,y,z)∈X

min
q=0,...,N−1

L(x, y, z, λq, µq1, µ
q
2) ≥ max

(x,y,z)∈X
min

(λ,µ1,µ2)∈Λ
L(x, y, z, λ, µ1, µ2)

the lemma is proved.

As a direct consequence of Proposition 5.3 and Lemma 5.5 we get that the optimal
solution value of problem LGNs(N) not only provides an upper bound on the optimal
solution value of the LGN but also on the optimal solution value of the GLCP (5.8) and
thus of the initial SLBP (5.4) in case of discretely distributed random variables:

Corollary 5.6. Let N ≥ 1. Then βN is an upper bound on the optimal solution value of
the GLCP (5.8).

5.5.2 Stopping criteria

We de�ne an absolute and a relative stopping criterion. Given δ > 0 and ε > 0, the
iterative scheme stops if the absolute error is less than δ, i.e.

βN − γN < δ or βN − γN−1 < δ

or if the relative error is less than ε, i.e.

(βN − γN)

βN
< ε or

(βN − γN−1)

βN
< ε

But does this case automatically arise when one of the problems have found an optimal
solution? Or, more precisely, can we immediately detect that an optimal solution has
been found? The answer is yes:

Lemma 5.7. Let N ≥ 0 and suppose that γN is the optimal solution value of the LGN .
Then βN+1 is also optimal with corresponding solution vector (xN+1, yN+1, zN+1, λN , µN1 , µ

N
2).

Proof. If γN is optimal for the LGN , we have

(λN , µN1 , µ
N
2) = arg min

(λ,µ1,µ2)∈Λ

(
max

(x,y,z)∈X
L(x, y, z, λ, µ1, µ2)

)
and

γN = max
(x,y,z)∈X

L(x, y, z, λN , µN1 , µ
N
2)

131

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint

As βN+1 ≤ L(xN+1, yN+1, zN+1, λq, µq1, µ
q
2) for all q ≤ N by constraints (5.10a), we get

βN+1 ≤ max
(x,y,z)∈X

L(x, y, z, λN , µN1 , µ
N
2) = γN

It has been shown in Lemmata 5.4 and 5.5 that γN is a LB and βN+1 an UB on the optimal
solution value of the LGN . It follows βN+1 = γN which terminates the proof.

Lemma 5.8. Let N ≥ 0 and suppose that βN is the optimal solution value of the LGN .
Then γN is also optimal with corresponding solution vector (xN , yN , zN , λN , µN1 , µ

N
2).

Proof. The proof is similar to the previous one.

Therefore, we know directly if one of the given solution values βN or γN (and the
corresponding solution vector) is optimal for the Lagrangian relaxation.

5.5.3 Convergence of the algorithm

In this subsection we will study the convergence of the minmax scheme. We will therefore
suppose that the GLCP (5.8) has a �nite optimal solution value.

As at each iteration we add a new constraint to both problems, the following two
lemmata follow directly:

Lemma 5.9. Let N ≥ 0. Then βN+1 ≤ βN .

�

Lemma 5.10. Let N ≥ 1. Then γN+1 ≥ γN .

�

Lemmata 5.11 and 5.12 show that the minmax scheme is acyclic, i.e. at each iteration
we either �nd an optimal solution of the LGN or generate two new feasible triples (x, y, z)
and (λ, µ1, µ2):

Lemma 5.11. Let N ≥ 2. Then either (λN , µN1 , µ
N
2) 6= (λh, µh1 , µ

h
2) for all 1 ≤ h < N or

γN is the optimal solution value of the LGN .

Proof. Let us assume that (λN , µN1 , µ
N
2) = (λh, µh1 , µ

h
2) for a h < N . Then

γN = max
q∈{1,...,N}

L(xq, yq, zq, λN , µN1 , µ
N
2)

≥ L(xh+1, yh+1, zh+1, λN , µN1 , µ
N
2)

= L(xh+1, yh+1, zh+1, λh, µh1 , µ
h
2)

≥ min
q∈{0,...,h}

L(xh+1, yh+1, zh+1, λq, µq1, µ
q
2) = βh+1

132

5.6 Modi�ed iterative minmax scheme

As γN is a lower bound on the LGN and βh+1 is an upper bound, it follows that
γN = βh+1 and γN (resp. βh+1) is thus the optimal solution value of the Lagrangian
relaxation.

Lemma 5.12. Let N ≥ 1. Then either (xN , yN , zN) 6= (xh, yh, zh) for all 0 ≤ h < N or
βN is the optimal solution value of the LGN .

Proof. The proof is similar to the previous one.

5.6 Modi�ed iterative minmax scheme

As the LGN is continuous, it might theoretically be possible that we get stuck on a
nonoptimal solution value for in�nitely many iterations, i.e. that there exists an N0 ≥ 2
such that either

L(xN
0

, yN
0

, zN
0

, λN
0−1, µN

0−1
1 , µN

0−1
2) is not optimal solution value of the LGN ,

and for all N ≥ N0

L(xN , yN , zN , λN−1, µN−1
1 , µN−1

2) = L(xN
0

, yN
0

, zN
0

, λN
0−1, µN

0−1
1 , µN

0−1
2)

or

L(xN
0

, yN
0

, zN
0

, λN
0

, µN
0

1 , µN
0

2) is not optimal solution value of the LGN ,

and for all N ≥ N0

L(xN , yN , zN , λN , µN1 , µ
N
2) = L(xN

0

, yN
0

, zN
0

, λN
0

, µN
0

1 , µN
0

2).

However, by Lemmata 5.7 and 5.8 we can immediately detect such a case as whenever
we have βN = βN+1 (γN = γN+1) but γN 6= βN+1 we can conclude that βN and βN+1

(γN and γN+1) are nonoptimal. In order to handle such cases, we propose the following
modi�ed minmax scheme: Whenever the case βN = βN+1 (γN = γN+1) arises we assure
that the next upper (lower) bound produced is better than the previous one by at least δ
by adding the following constraint:

β ≤ βN − δ (respectively γ ≥ γN + δ) (5.14)

Here δ is the absolute error chosen for our stopping criterion. So whenever adding a
constraint of type (5.14) leads to an infeasible problem, we know that the last upper
(lower) bound found has at most a di�erence of δ to the optimal solution value and we
can immediately stop the iterations.
Let LGNs(x,y, z, λ, µ1, µ2, UB) be the function that solves subproblem (5.10). If the
corresponding problem has a feasible solution, the function returns the optimal solution
value. Otherwise, it returns a prede�ned value NF . Here (λ, µ1, µ2) are parameters that
add a new constraint of the form (5.10a). This constraint is kept in the following calls of

133

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint

LGNs.
The function will store the solution vectors in the variables (x, y, z). If the problem has no
feasible solution, (x, y, z) keep their input values. The parameter UB de�nes an additional
constraint of type (5.14). This constraint is only kept for this single iteration. If UB =∞
no constraint of type (5.14) is added.
In the same manner (just changing the roles of parameters and variables and the sign
of the added constraint) we de�ne LGNd(x, y, z, λ, µ1, µ2, LB) with LB = −∞ meaning
that no additional constraint is added.
The proposed modi�ed minmax scheme is stated in Algorithm 5.6.1. The variables UB∗

and LB∗ store the best upper and lower bound found so far while UB and LB are the
bounds which we make the next calls of our problem solving functions with. tmpUB and
tmpLB serve to store the return of these calls. The stopping criteria de�ned in section
5.5.2 are also used for this modi�ed scheme. The following proposition is a corollary of
the aforementioned results and the modi�cation proposed in this section:

Proposition 5.13. Algorithm 5.6.1 �nds, after �nitely many iterations, either a feasible
solution for the LGN (5.9) with error ratio ε or a δ-optimal solution.

�

5.7 Numerical experiments1

We conducted computational experiments to test the convergence of the scheme proposed
in section 5.6 data randomly generated to match the general model studied in this chapter.
As the exact solutions of the test instances generated are not known and cannot, in general,
be practically obtained using common commercial solvers, we restricted our study to the
convergence of the proposed minmax scheme.
The iterative minmax scheme has been implemented in C++. Linear programs are solved
with Cplex 112.

5.7.1 Data Generation

The instances used were randomly generated following the LBP model. Note that this is
the same as generating data for the initial model SLBP directly since both problems are
equivalent under the assumption that Ω is �nite.
The parameters of the data generation are the number of variables (resp. constraints) for
the upper-level problem nx (resp. m1), the number of variables (resp. constraints) for the
lower-level problem ny (resp. m2), the number of scenarios K and the risk α.
In order to generate a bounded polyhedron, we used the method described in [HT89] to

1The numerical experiments and results presented in this section have been conducted by Pierre Le
Bodic in the course of a joint work with Janny Leung and Abdel Lisser ([KBLL10]).

2Computation times have been measured on NEC Express5800 120Rh (4*2GHz,3GB) servers, with two
single-processed schemes simultaneously running.

134

5.7 Numerical experiments

set the components of A, B and b: For every row except the last one, the elements of
A and B are uniformly drawn in [−1, 1]. The components of the last row are uniformly
chosen in [0, 1]. b is computed in the following manner:

bi =
n∑
j=1

Aij +Bij + ρ, i = 1, . . . ,m

where ρ is uniformly chosen in [0, 2]. This ensures that the polyhedron de�ned by both
sets of constraints (5.6a) and (5.6h) is nonempty and bounded.
Constraints (5.6b) are generated as follows: For every scenario k, the components of wk
are uniformly chosen in [0, 1]. Let Wk = wtk1nx . sk is uniformly generated in [1

2
Wk,Wk].

The upper boundWk is chosen such that scenario k is not necessarily respected. The lower
bound 1

2
Wk is arbitrarily chosen so that scenario k is not too restrictive. As presented in

section 5.3 one can set Mk = Wk − sk so that zk = 1 disables the constraint.
The vector p of constraint (5.6c) respects:{

0 ≤ pk ≤ 1, k = 1, . . . , K

pt1K = 1

i.e. pk is the probability of scenario k. The coe�cients of the objective functions, i.e. the
components of ci and di (i = 1, 2), are uniformly generated in [0, 10].
This generation procedure ensures that the feasible region of the LBP instance generated
is bounded, but it does not guarantee nonemptiness.

5.7.2 Numerical Results

The absolute (resp. relative) tolerance is δ = 10−8 (resp. ε = 10−5). The maximum
relative error ε has obviously a signi�cant in�uence on the number of iterations needed to
stop the scheme. For example, in Figure 5.7.1 the convergence of the bound values itera-
tively produced by the minmax scheme on one of the randomly generated test instances
(with nx = ny = K = 100) is shown. The scheme stops after solving 33 linear programs,
i.e. at the 17th iteration. After 10 iterations, the relative error amounts to 0.14%. Upon
reaching the stopping criteria, the relative error is 0.01%. This convergence behavior is
recurrent.
The obtained numerical results are shown in table 5.1. Results are only presented for
m1 = nx and m2 = ny. For each (K,nx, ny) triple, the scheme has been tested on 50 in-
stances. For each triple, the minimum, average, maximum time (in seconds) and number
of linear programs solved (LGNs and LGNd added) are provided.
Not surprisingly, the time needed to reach the stopping criteria increases both with the
size of the upper-level and lower-level problems, nx and ny. The computing time as well
as the number of linear problems solved does, however, not vary with the number of sce-
narios K. Also, a very interesting phenomenon arises once ny becomes larger than nx:
The average number of iterations decreases as ny increases (see for example the �rst four

135

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint

Figure 5.7.1: Convergence of the bound values for the SLBP iteratively produced by the
minmax scheme

valued rows of column Avg #LP). A possible explanation is that the bigger the lower-
level problem, the larger the Lagrangian L(x, y, z, λ, µ1, µ2), and therefore the deeper each
cut. Clearly, deeper cuts decrease the number of iterations needed to reach the stopping
criteria.
The numerical tests con�rm the theoretical results obtained in section 5.5, i.e. the iterative
scheme reaches a near-optimal solution of the LGN after �nitely many steps. However,
the quality of the bounds produced by the minmax scheme remains to evaluate.

5.8 Improved bounds

The LGN (5.9) is a relaxation of the initial SLBP and solving this problem will in general
only give an upper bound on the optimal solution value of the SLBP . Unfortunately,
some tests on particular instances (where the optimal solution values were known) have
shown that these upper bounds can be quite far from the optimum. The following result
shows that, in fact, a relaxation of the GLCP where one simply removes the quadratic
constraints (5.8g)-(5.8j) (hereafter called Relaxed GLCP (RGLCP)) would generally give
a better bound than the LGN :

Proposition 5.14. Let (x∗, y∗, z∗, λ∗, µ∗1, µ
∗
2) and (x̃, ỹ, z̃, λ̃, µ̃1, µ̃2) be optimal solutions of

the LGN (5.9) and the RGLCP , respectively. Then

ct1x̃+ dt1ỹ ≤ L(x∗, y∗, z∗, λ∗, µ∗1, µ
∗
2)

136

5.8 Improved bounds

Proof. As (x∗, y∗, z∗, λ∗, µ∗1, µ
∗
2) is optimal for the LGN (5.9), we have

L(x∗, y∗, z∗, λ∗, µ∗1, µ
∗
2) = max

x,y,z∈X
L(x, y, z, λ∗, µ∗1, µ

∗
2)

≥ L(x, y, z, λ∗, µ∗1, µ
∗
2) ∀ (x, y, z) ∈ X

where X is the set of feasible triples (x, y, z) for problem LGN (5.9). As problems LGN
and RGLCP have the same constraints, (x̃, ỹ, z̃) ∈ X. We get

L(x∗, y∗, z∗, λ∗, µ∗1, µ
∗
2) ≥ L(x̃, ỹ, z̃, λ∗, µ∗1, µ

∗
2) ≥ ct1x̃+ dt1ỹ

where the last inequality follows from

(λ∗)t(b2 − A2x̃−B2ỹ) + (µ∗1)tz + (µ∗2)t(1K − z̃) + ỹt((B2)tλ∗ − d2) ≥ 0

Due to this observation, we propose a second relaxation where the quadratic terms are
relaxed in the objective function with a minus sign and the resulting problem is maximized
over both the primal as well as dual variables. Let us de�ne a second Lagrangian relaxation
function L− as

L−(x, y, z, λ, µ1, µ2) = ct1x+dt1y−λt(b2−A2x−B2y)−µt1z−µt2(1K−z)−yt((B2)tλ−d2)

This gives us the following relaxation of the GLCP (5.8):

(LGN-) max
x,y,z,λ,µ1,µ2

L−(x, y, z, λ, µ1, µ2)

s.t. A1x+B1y ≤ b1, (5.15a)

wtkx ≤ sk +Mkzk ∀ k = 1, . . . , K, (5.15b)

ptz ≤ α, (5.15c)

A2x+B2y ≤ b2, (5.15d)

(B2)tλ ≥ d2, (5.15e)

IKµ1 + IKµ2 ≥ 1K , (5.15f)

Onx ≤ x ≤ 1nx ,OK ≤ z ≤ 1K , (5.15g)

y, λ, µ1, µ2 ≥ 0. (5.15h)

Proposition 5.15. Let (x∗, y∗, z∗, λ∗, µ∗1, µ
∗
2) be an optimal solution of the LGN . Then

L−(x∗, y∗, z∗, λ∗, µ∗1, µ
∗
2) is an upper bound on the optimal solution value of the GLCP

(5.8).

Proof. Let (x̃, ỹ, z̃, λ̃, µ̃1, µ̃2) denote an optimal solution of the GLCP (5.8) and let OPT
denote the optimal solution value of (5.8). (x̃, ỹ, z̃, λ̃, µ̃1, µ̃2) is feasible for the relaxation
(5.15) with corresponding objective function value ct1x̃+dt1ỹ. It follows that for the optimal
solution value OPTrel of (5.15) we have

OPTrel ≥ ct1x̃+ dt1ỹ = OPT

which terminates the proof.

137

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint

Moreover, it can be shown that the upper bound obtained by solving the LGN is better
than that obtained by solving the simple linear relaxation RGLCP of the GLCP :

Proposition 5.16. Let (x∗, y∗, z∗, λ∗, µ∗1, µ
∗
2) be an optimal solution of the relaxation

(5.15). Then L−(x∗, y∗, z∗, λ∗, µ∗1, µ
∗
2) ≤ OPTlrel where OPTlrel denotes the optimal solu-

tion value of the linear relaxation RGLCP .

Proof. Let (xrel, yrel, zrel, λrel, µrel1 , µrel2) be an optimal solution of the RGLCP . As
(x∗, y∗, z∗, λ∗, µ∗1, µ

∗
2) is feasible for the RGLCP , it follows

OPTlrel = ct1x
rel + dt1y

rel ≥ ct1x
∗ + dt1y

∗

Furthermore, we have

b2 − A2x∗ −B2y∗ ≥ 0

(B2)tλ∗ − d2 ≥ 0

y∗, λ∗, µ∗1, µ
∗
2 ≥ 0

0 ≤ z∗ ≤ 1

⇒ −(λ∗)t(b2 − A2x∗ −B2y)− (µ∗1)tz − (µ∗2)t(1K − z)− (y∗)t((B2)tλ∗ − d2) ≤ 0

It follows

OPTlrel ≥ ct1x
∗ + dt1y

∗ ≥ L−(x∗, y∗, z∗, λ∗, µ∗1, µ
∗
2)

The LGN− has a structure similar to that of the LGN (5.9):

• The objective function of the LGN− is bilinear and the constraints are linear.

• When �xing either the primal decision vectors x, y, z or the dual decision vectors
λ, µ1, µ2, the obtained problem is linear (i.e. the bilinear summands in the objective
always contain one primal and one dual variable).

• The constraints are separable in the sense that no constraint contains both primal
and dual variables.

Contrary to the LGN the LGN− is, however, a pure maximization problem. The iterative
scheme presented in section 5.5 is therefore not a candidate to solve this new relaxation.
In the next subsection we will give an extended review of methods that can be used to
solve this second relaxation. Future work will consist of studying the tractability of these
algorithms to solve the LGN− and/or to adapt one or more of them to our special case.

138

5.8 Improved bounds

5.8.1 Methods to solve Bilinear Optimization Problems with
separable, linear constraints

There have been numerous attempts to solve separably constrained bilinear problems of
the form

(SCBP) max
x,y

cTx+ xTQy + dTy

s.t. x ∈ X, y ∈ Y. (5.16a)

where c, d are given vectors, A is a given matrix and X and Y are given polyhedra. A
natural idea to solve such a problem is to iteratively �nd a solution of the two subproblems

(SCBP1) max
x

cTx+ xTQyk

s.t. x ∈ X. (5.17a)

and

(SCBP2) max
y

(xk)TQy + dTy

s.t. y ∈ Y. (5.18a)

where xk and yk are the last obtained optimal solutions of the SCBP1 or SCBP2, re-
spectively. Konno [Kon76] studied this idea and argued that, in case of �nite polyhedra
X and Y , the algorithm �nds a Karush-Kuhn-Tucker point of the initial problem after a
�nite number of iterations. The author extended its algorithm using Ritter-cutting planes
in order to obtain an ε-optimal solution. Although the �nal algorithm is proven to stop
with such a solution, no demonstration is given that the algorithm e�ectively terminates
after a �nite number of steps.
Konno presented in this same paper a theorem that is the basis for another approach to
solve separably constrained bilinear problems, namely vertex enumeration of the polyhe-
dron X and/or Y (see for example [CF70]):

Theorem 5.17. [Kon76] Assume that X and Y are nonempty and bounded. Then the
SCBP has an optimal solution (x∗, y∗) such that x∗ is a vertex of the polyhedron X and
y∗ is a vertex of the polyhedron Y .

By using the dual of either the SCBP1 or the SCBP2, the SCBP can be reformu-
lated as a programming problem with piecewise linear objective function (see for example
[AAJS01]): Suppose that X = {x ≥ 0|Ax ≤ a} and Y = {y ≥ 0|By ≤ b}. Then the
SCBP can be equivalently formulated as either

(SCBPd1) max
x

cTx+ min
u
bTu

s.t. Ax ≤ a, (5.19a)

B u ≥ d+QT x, (5.19b)

x, u ≥ 0. (5.19c)

139

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint

or

(SCBPd2) max
y

dTy + min
u
aTu

s.t. By ≤ b, (5.20a)

Au ≥ c+Qy, (5.20b)

y, u ≥ 0. (5.20c)

In [GU77] the authors reformulate the SCBPd1 as a maximization problem over a generally
nonconvex, but connected feasible set. The authors propose a cutting plane algorithm
that explores the set of vertices of X. Contrary to the case of the iterative cutting plane
algorithm by Konno, the authors of [GU77] show that their algorithm always terminates
with an optimal (not just ε-optimal) solution, but �nite termination is not guaranteed,
either.
The �rst exact cutting plane algorithm for the SCBP with �nite convergence guarantee
was proposed by Sherali and Shetty [SS80]. The algorithm makes use of a bunch of
previously developed results on cutting plane algorithms. Among others, they improve a
previously proposed algorithm by Vaish and Shetty ([VS77]) that did not yet guarantee
�nite convergence, by adding so called disjunctive cuts.
There have also been attempts to solve the SCBP using a B&B algorithm. In fact,
the B&B algorithm by Falk ([Fal73]) created for a more general minmax problem was
the �rst algorithm for linear bilevel programming problems that was proven to terminate
with an optimal solution in a �nite number of steps. Bounding is done by solving pure
maximization subproblems and the branching idea is to keep certain variables out of
the basis until a solution is found that is also optimal for the initial minmax problem.
Other B&B algorithms branch on the complementary slackness conditions of SCBPd1

and SCBPd2, an idea that is often used to solve problems with a structure similar to that
of linear complementary problems (see also section 5.1.3 where this B&B method has
been presented as an approach to directly solve linear bilevel problems). These as well as
other B&B approaches (e.g. [AKF83]) are, however, in general intractable for large size
instances and beat by the abovementioned cutting plane algorithm by Sherali and Shetty.
As a consequence, most recent work on the solution of the SCBP focused on the search
for better cutting plane algorithms. In [AAJS01] the authors combine a cutting plane
algorithm (using concavity cuts such as in the early works [Kon76] and [GU77]) with a
B&B procedure. The algorithm is however slowed down by the fact that concavity cuts
are added for both subproblems (5.19) and (5.20). Similarly, the algorithm by Sherali
and Shetty su�ers from the computational expensive generation of the disjunctive cuts.
A very recent work by Ding and Al-Khayyal thus aimed to decrease the computational
load of the added cuts by tightening the bounding (see [DAK07]).
A notable algorithm is that presented in [YK91] for bilinear problems where the rank of
the matrix Q is two or three. The authors show that solving a so called two rank bilinear
problem is in general not more di�cult than solving three linear problems having the
same constraints as the initial bilinear problem.

140

5.9 Concluding remarks and future work

5.9 Concluding remarks and future work

In this chapter we studied a novel stochastic bilevel problem with knapsack chance-
constraint. To solve this problem, we proposed to transform the initial problem into
an equivalent quadratic problem based on the assumption of a discrete probability space.
The obtained quadratic (or more precisely bilinear) problem was further relaxed into a
linear minmax problem. An iterative approach with convergence guarantee applied to the
latter allowed to �nd upper bounds on the optimal solution value of the initial stochastic
bilevel problem.
Numerical experiments con�rmed that the proposed iterative method converges in �nitely
many iterations to an ε-optimal solution. We however remarked that on some instances
the obtained upper bound is relatively far from the optimum. We therefore proposed
improved bounds by relaxing the quadratic problem not in a minmax, but a maximiza-
tion problem. Methods to solve such bilinear maximization problems can be found in the
literature and a selection of such algorithms was presented in this chapter. Future work
will naturally consist in testing these algorithms on our special problem. It is clear that
to solve the bilinear maximization problem obtained, some of the presented approaches
might be more suitable than others. Especially, it might be fruitful to exploit the special
structure of the problem, as for example some of the constraints are re�ected in the ob-
jective.
For instance we only proposed a method to obtain an upper bound on the optimal solu-
tion value of the initial stochastic bilevel problem. It remains to study how to solve the
problem exactly (for example by adapting one of the existing algorithms for linear bilevel
programming problems) and to compare such an approach to the method proposed in
this chapter (concerning computing time / tractability as well as the quality of our upper
bounds). As an example, one could use an exact penalty method to include the bilinear
terms in the objective (as proposed in [FP01]) instead of relaxing them.
In this chapter we assumed a �nite number of possible outcomes for the random vector
χ. Another interesting variant would be obtained by making the assumption that the
weights as well as the capacity are independently normally distributed, as done for ex-
ample in chapters 3 and 4. It is well known that in such a case the chance-constraint
de�nes a convex set and can be deterministically reformulated. Consequently, methods to
solve bilevel problems with convex upper and linear lower level problem could be applied
to solve the problem. Moreover, one could extend the model to more general (convex)
functions, in particular to the well studied case of a quadratic lower level problem.
Another possible approach to solve the stochastic bilevel problem with knapsack chance-
constraint in the case of continuous probability distributions (or a number of scenarios
that is too big to allow a deterministic equivalent reformulation as presented in this chap-
ter) could be to use a stochastic gradient algorithm as proposed in [Wer04]: First, the
initial problem is reformulated as a quadratic single level problem with knapsack chance-
constraint using the reformulation method presented in this chapter. Then, the bilinear
constraints are included in the objective by introducing additional Lagrange multipliers.
The obtained problem is solved using a Stochastic Arrow-Hurwicz algorithm (see chap-

141

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint

ter 3). Feasibility concerning the remaining linear constraints is ensured by a matrix
projection at each iteration.

142

5.9 Concluding remarks and future work

Iterative minmax Algorithm
Require: ∃ (x, y, z, λ, µ1, µ2) feasible for the LGN
Require: δ > 0, ε > 0
UB ←∞, UB∗ ←∞
LB ← −∞, LB∗ ← −∞
(λ, µ1, µ2) feasible for the LGN
loop
tmpUB ← LGNs(x,y, z, λ, µ1, µ2, UB)
if tmpUB = NF then
LB∗ = UB
BREAK LOOP

else
if tmpUB = UB∗ then
UB ← tmpUB − δ

else
UB∗ ← tmpUB
UB ←∞
if UB∗ − LB∗ < δ or (UB∗ − LB∗)/UB∗ < ε then
BREAK LOOP

end if
end if

end if

tmpLB ← LGNd(x, y, z, λ, µ1, µ2, LB)
if tmpLB = NF then
UB∗ = LB
BREAK LOOP

else
if tmpLB = LB∗ then
LB ← tmpLB + δ

else
LB∗ ← tmpLB
LB ← −∞
if UB∗ − LB∗ < δ or (UB∗ − LB∗)/UB∗ < ε then
BREAK LOOP

end if
end if

end if
end loop
return LB∗ and/or UB∗

Algorithm 5.6.1: The iterative minmax scheme with convergence guarantee.

143

5 The Stochastic Bilevel Problem with Knapsack Chance-Constraint

Parameters Time (s) #LP
K nx ny Min Avg Max Min Avg Max
20 50 50 0 0 1 17 29 57

100 0 0 1 18 32 44
500 11 13 17 17 24 32
1000 113 137 172 16 20 27

100 50 0 0 1 18 31 48
100 0 0 2 23 49 84
500 18 21 25 23 34 52
1000 152 180 213 20 28 37

500 50 5 7 10 13 26 43
100 10 13 17 22 36 51
500 95 123 179 46 81 177
1000 431 549 795 53 82 116

1000 50 46 61 76 13 25 37
100 73 89 108 21 31 43
500 293 383 458 34 57 89
1000 854 1211 1549 32 75 129

50 50 50 0 0 1 15 28 56
100 0 0 1 17 31 49
500 13 15 18 18 25 31
1000 115 134 166 15 20 26

100 50 0 0 1 23 32 53
100 0 0 2 27 44 73
500 19 23 29 26 36 56
1000 149 179 212 20 28 41

500 50 6 8 12 13 28 47
100 11 14 19 24 36 58
500 89 127 199 39 80 213
1000 446 535 652 47 80 151

1000 50 50 64 78 10 26 41
100 78 93 114 23 32 43
500 277 389 629 25 56 89
1000 638 1259 2235 10 77 113

100 50 50 0 0 1 19 28 45
100 0 0 1 18 30 44
500 13 15 19 16 23 32
1000 115 140 166 16 20 26

100 50 0 0 1 17 32 49
100 1 1 2 29 42 79
500 19 23 29 23 33 46
1000 156 180 213 21 27 37

500 50 7 9 14 15 27 45
100 11 16 22 19 36 61
500 102 130 169 50 77 151
1000 485 548 720 53 79 163

1000 50 50 67 92 17 26 40
100 79 97 126 19 33 47
500 303 405 760 37 56 77
1000 867 1220 1528 33 77 122

Table 5.1: Numerical results for the SLBP : Convergence results of the iterative scheme

144

6 Conclusion

Stochastic optimization problems are generally hard to solve. In only some few cases intro-
ducing stochasticity does not considerably change the di�culty of the problem. In the rest
of the cases, assuming uncertainty in one or more parameters signi�cantly increases the
time or space requirement to solve the problem exactly or approximately. As an example,
we have seen in the second part of chapter 4 that the knapsack problem, that is weakly
NP-hard in the deterministic setting, becomes strongly NP-hard in case of a stochastic
two-stage setting with random, discretely distributed weights. Moreover, the determinis-
tic knapsack problem has a very simple constant-factor approximation algorithm, whereas
the Two-Stage Knapsack problem was shown to be most likely non-approximable within
a constant factor.
Due to the hardness of stochastic optimization problems, it is not unusual that the con-
ducted studies focus on the computation of good and relatively fast computable upper
and/or lower bounds, for example by solving a relaxed version of the initial problem.
In chapter 2 we proposed a method to solve the Simple Recourse Knapsack problem with
normally distributed weights. We have seen that the relaxed, i.e. continuous version of
the problem can be solved approximately in a rather e�cient way by applying a stochastic
gradient algorithm. When comparing this approach with the solution of the deterministic
knapsack problem, whose relaxation can be solved by a very simple greedy algorithm, one,
however, gets an idea of the increase in di�culty that the introduction of uncertainties
entails. It is thus not surprising that, for instance, we are only able to solve the (combina-
torial) Simple Recourse Knapsack problem with up to 100 items in an average computing
time of less than 1h.
In chapter 3 we studied the Chance-Constrained Knapsack problem. Once again we
applied a stochastic gradient type algorithm to solve the continuous relaxation of the
problem. We encountered some problems that are based on the special structure of the
problem. Two of these problems prevented the algorithm from converging. They could be
solved by investigating in a deeper analysis of the problem's structure and the used solu-
tion method. The third problem concerned our choice to solve the Chance-Constrained
Knapsack problem with a stochastic Arrow-Hurwicz algorithm. While the initial problem
can be shown to be a convex optimization problem (more precisely the maximization of a
linear objective function over a convex feasible set), the objective function of the chosen
Lagrangian relaxation is unfortunately not concave on the whole feasible region. Although
this was not an issue for the convergence of the algorithm on the test instances generated,
a wiser choice of the Lagrangian relaxation would result in a concave objective of the
Lagrangian relaxation. This idea has been applied in chapter 4. Nevertheless, we have
seen that we can solve the relaxed as well as combinatorial Chance-Constrained Knapsack

145

6 Conclusion

problem with the proposed method with more or less the same e�ciency as the Simple
Recourse Knapsack problem in chapter 2.
The �rst part of chapter 4 was dedicated to the Two-Stage Knapsack problem with nor-
mally distributed weights. When searching for a method to solve this problem, one
encounters a di�culty that is typical for stochastic optimization problems but that has
not yet been an issue in the previous two chapters: the question of how to evaluate the
objective function. In the case of the Two-Stage Knapsack problem with normally dis-
tributed weights (as well as for many stochastic optimization problems with continuously
distributed random variables), the evaluation of the objective function involves the com-
putation of a multi-dimensional integral whose integrand and domain of integration is,
in addition, not given analytically. In the literature, this problem is often avoided by
assuming a discrete distribution for the random parameters. We instead proposed lower
bounds on the objective function value that are designed to replace the exact evaluation
of the objective function in a framework such as a branch-and-bound algorithm. We
also showed, that the continuous relaxation of the problem is in fact a Simple Recourse
Knapsack problem with chance-constraint, which allowed us to solve this relaxation using
methods from the previous two chapters. For the particular case of similar item weights,
we were able to solve the problem to near optimality for up to 2000 items in about 30
minutes average computing time.
In the second part of chapter 4 we studied the Two-Stage Knapsack problem under the
assumption of discretely distributed weights. In this case, the problem can be reformu-
lated as a linear programming problem with binary variables and could thus theoretically
be solved with common algorithms for linear combinatorial optimization. The problem
is (as with many deterministic reformulations of stochastic optimization problems) that
solving the obtained deterministic problem to optimality is generally only tractable in
case the random variables only admit a very small number of realizations. We therefore
studied the problem under the aspect of approximability. While some combinatorial op-
timization problems are not much more di�cult to approximate than their deterministic
counterpart, the Two-Stage Knapsack problem turned out to not even admit a constant-
factor approximation algorithm (unless P = NP). This result has been obtained by
a reduction from the well-studied multiply-constrained (or multi-dimensional) knapsack
problem. Moreover, even some special variants of the Two-Stage Knapsack problem that,
on the �rst sight, seem to be easier to solve than the general problem were shown to be
non-approximable within a constant factor.
The stochastic optimization problem studied in the last chapter of this thesis is di�erent
from those in the previous chapters in the sense that its deterministic counterpart is al-
ready very hard to solve: While the stochastic knapsack problems treated in chapters 2-4
were based on the weaklyNP-hard deterministic knapsack problem, we studied in the last
chapter a stochastic variant of a bilevel problem with knapsack constraint. Bilevel prob-
lems can be shown to be strongly NP-hard even in the apparently simplest case of linear
objectives and constraints and continuous decision variables. Contrary to the previous
chapters, the main e�ort made to solve the proposed stochastic bilevel problem therefore
consisted in solving the underlying deterministic problem (or, more precisely, computing

146

6.1 Future Work

upper bounds on its optimal solution value). The problem studied in chapter 5 is thus an
example for a stochastic optimization problem that is not "much" harder to solve than its
deterministic counterpart simply by the fact that the underlying deterministic problem is
already extremely di�cult.

6.1 Future Work

Some concrete ideas for future work concerning the models and methods proposed in this
thesis have already been presented in the respective chapter conclusions. Here we want
to discuss some more general, open questions concerning the thesis globally.

In this thesis we assumed for the random variables of each of the treated problems a
particular underlying probability distribution. Future work will thus �rst of all consist in
extending the obtained results and proposed methods to a larger class of distributions.
In the �rst two chapters we assumed the item weights of the studied stochastic knapsack
problems to be independently normally distributed. The great advantage of this assump-
tion is that by using the available value tables for normally distributed variables we are
able to easily evaluate the objective or constraint functions. We used this in the proposed
branch-and-bound framework in order to obtain lower bounds as well as in the stochastic
gradient algorithm in order to determine the best feasible solution found. Our solution
method can therefore be easily extended to other distributions that allow for a simple
evaluation of the involved functions, but also to the case of a black-box assumption: The
evaluation of the objective function in the branch-and-bound tree could be replaced by
either lower bounds on the exact objective function value (as done in section 4 for the
Two-Stage Knapsack problem) or by approximations of the objective function value using
sampling. Concerning the stochastic gradient algorithm, the numerical convergence tests
have shown, that it might be an alternative to stop the algorithm when the variance of the
produced solutions becomes su�ciently small. Remember that the algorithm itself does
only make use of a black-box for the random variables and theoretically no evaluation of
the objective is needed during the algorithm. Moreover, the sampling done during the
stochastic gradient algorithm could be used to approximate the solution values for the
obtained solution vectors.
In the �rst part of chapter 4 we used the assumption of a normal distribution to propose
lower bounds on the objective function value of the Two-Stage Knapsack problem for a
given �rst-stage solution. Mainly, we took advantage of the property that the CDF of a
random variable de�ned as the maximum over a set of normally distributed parameters
can be easily computed. Such a property might be di�cult to obtain for other distribu-
tions. It is, however, not clear how to evaluate the expectation of such a random variable
in case of normal distributions, which might in contrary be possible for di�erent distribu-
tions. Therefore, the approach of chapter 4 is probably not extendable to a general class of
distributions, but similar bounds might be obtained for other (continuous) distributions.
Concerning the non-approximation result proved in the second part of chapter 4, it would

147

6 Conclusion

be interesting to see what happens if the underlying distribution is assumed to be con-
tinuous or if we make a black-box assumption. Approximating the problem by applying
a Sample Average Approach is clearly not useful, as the obtained problem is a Two-Stage
Knapsack problem with discretely distributed weights that has been shown to be non-
approximable within a constant factor.
For the Stochastic Bilevel problem studied in chapter 5 some ideas to solve the problem
in case of continuously distributed random variables have already been given at the end
of the chapter (see section 5.9).

In chapters 3, 4 and 5 the treated problems contain a knapsack chance-constraint. Here,
future research might consist in extending the models to the case of a joint chance-
constraint, i.e. the case where several constraints shall be jointly satis�ed with a prob-
ability greater or equal to a given threshold. Note that in case of discretely distributed
parameters and binary (or bounded) decision variables, such a constraint can be replaced
by a set of deterministically equivalent constraints as done in chapter 5 with the simple
chance-constraint (see also the introduction of chapter 3). In case of continuous distribu-
tions, the question is mainly how to evaluate the probability function.
An open problem is how to handle additional deterministic constraints that for example
represent a network architecture or additional (deterministic) resource/demand relations.
A possible answer to this question has already been discussed in the conclusion of chapter
2. More details can be found in [KL10b] where we propose a projected gradient algorithm
to solve the Simple Recourse Shortest Path problem. A still open question concerning the
deterministic projected gradient method however prevented us for instance from obtaining
numerical results and evaluating the quality of our randomized algorithm.

An important stochastic optimization problem type that has not at all been studied in
this thesis is the multi-stage model. It is clear that in many practical cases informations
about the random variables are not revealed in one, but several stages. When extending
the Two-Stage Knapsack problem to a Multi-Stage Knapsack problem the �rst question
that has to be answered is what decision can or has to be made in each stage. Can an
item that has been rejected in one stage be re-added in a subsequent stage? Has an item,
once it is chosen, to be kept in subsequent stages? Is it realistic to assume that we know
in advance which item weights are revealed in which stage? Open questions concerning
the solution of such a problem are: Can the problem be decomposed into a sequence of
Two-Stage problems? Can the continuous relaxation be reformulated as a sort of Simple
Recourse Knapsack problem as this is the case for the corresponding two-stage problem?
Can the lower bounds proposed in this thesis be extended to the multi-stage case?
As a concrete example, imagine that the item weights come to be known over several stage
and the reward per weight unit of each item is strictly decreasing from one stage to the
next. Items can be chosen while their weight is still unknown or in one of the stages after
the actual weight has come to be known. An added item can be rejected once its weight is
revealed. However, it cannot be re-added any more. Of course, rejecting an item entails a
penalty that is strictly greater than the reward obtained for adding the item. Then a (sim-

148

6.1 Future Work

ple) lower bound can be computed by solving the following Two-Stage Knapsack problem:
One assumes that all weights are revealed in the second stage and that the item's rewards
per weight unit equal the reward per weight unit received in the last stage. Instead of
solving the problem exactly, the lower bounds proposed in this thesis could be applied.
Similarly, an upper bound is given by the solution of the Two-Stage Knapsack problem
where the second-stage rewards equal the second-stage rewards of the multi-stage problem.

Last but not least, it remains naturally to study how to (e�ciently) solve the Two-Stage
Knapsack problems of chapter 4 and the Stochastic Bilevel problem with knapsack con-
straint of chapter 5 to optimality. Although many algorithms have been proposed for
both types of problems (i.e. two-stage and quadratic problems), it seems promising to
exploit the special structure of the problems in order to obtain more e�cient algorithms.

149

List of Figures

2.4.1 Convergence of the stochastic gradient algorithm solving the continuous
SRKP . 32

3.4.1 Constraint function Θ of the CCKP in 2-dimensional case with realistic
parameters . 56

3.4.2 Convergence of the SAH algorithm solving the continuous ECKP : FD-
method (bold curve) versus initial IP-method (upper �gure) and IP-method
with modi�ed choice of xkappa (lower �gure) 59

3.4.3 Calculating a subgradient for 500 samples of χ: FD-method (upper �gure)
versus initial IP-method (lower �gure) . 61

3.4.4 Calculating an expected subgradient by sampling: FD-method (black) ver-
sus initial IP-method (gray) . 61

5.7.1 Convergence of the bound values for the SLBP iteratively produced by
the minmax scheme . 136

151

List of Tables

2.1 Values of the Cohn-instance . 31
2.2 Numerical results for the continuous SRKP 33
2.3 Numerical results for the (combinatorial) SRKP 34

3.1 Numerical results for the continuous ECKP 62
3.2 Numerical results for the (combinatorial) ECKP 65

4.1 Numerical results for the TSKP : Items can only be added in the second
stage (general items) . 97

4.2 Numerical results for the TSKP : Items can only be added in the second
stage (similar items) . 99

4.3 Numerical results for the TSKP : Items can only be rejected in the second
stage (general items) . 100

4.4 Numerical results for the TSKP : Items can only be rejected in the second
stage (similar items) . 101

4.5 Numerical results for the TSKP : Items can be added or rejected in the
second stage (general items) . 101

4.6 Numerical results for the TSKP : Items can be added or rejected in the
second stage (similar items) . 102

5.1 Numerical results for the SLBP : Convergence results of the iterative scheme144

153

Bibliography

[AAJS01] Stéphane Alarie, Charles Audet, Brigitte Jaumard, and Gilles Savard. Con-
cavity cuts for disjoint bilinear programming. Mathematical Programming,
90(2):373�398, 2001.

[ACVA07] Laetitia Andrieu, Guy Cohen, and Felisa Vázquez-Abad. Stochas-
tic programming with probability constraints. http://hal.inria.fr/

hal-00166149_v1 (Accessed 17 August 2010), 2007.

[AG09] Semra A§ral� and Joseph Geunes. A single-resource allocation problem with
Poisson resource requirements. Optimization Letters, 3(4):559�571, 2009.

[AHJS97] Charles Audet, Pierre Hansen, Brigitte Jaumard, and Gilles Savard. Links
between linear bilevel and mixed 0-1 programming problems. Journal of
Optimization Theory and Applications, 93(2):273�300, 1997.

[AK90] Faiz Al-Khayyal. Jointly constrained bilinear programs and related prob-
lems: An overview. Computers & Mathematics with Applications, 19(11):53�
62, 1990.

[AKF83] Faiz Al-Khayyal and James E. Falk. Jointly constrained biconvex program-
ming. Mathematics of Operations Research, 8(2):273�286, 1983.

[Alb03] Susanne Albers. Online algorithms: a survey. Mathematical Programming,
97:3�26, 2003.

[And04] Laetitia Andrieu. Optimization sous contrainte en probabilité. PhD thesis,
Ecole Nationale des Ponts et Chaussées, 2004.

[ARGK98] Norbert Ascheuer, Jörg Rambau, Martin Grötschel, and Sven O. Krumke.
Combinatorial online optimization. In Operations Research Proceedings,
1998.

[AS02] Shabbir Ahmed and Alexander Shapiro. The sample average approximation
method for stochastic programs with integer recourse. Technical report,
School of Industrial & Systems Engineering, Georgia Institute of Technology,
2002. http://www2.isye.gatech.edu/~sahmed/saasip.pdf.

[ATS03] Shabbir Ahmed, Mohit Tawarmalani, and Nikolaos V. Sahinidis. A �-
nite branch and bound algorithm for two-stage stochastic integer programs.
Mathematical Programming, 100(2), 2003.

155

http://hal.inria.fr/hal-00166149_v1
http://hal.inria.fr/hal-00166149_v1
http://www2.isye.gatech.edu/~sahmed/saasip.pdf

BIBLIOGRAPHY

[BAB90] Omar Ben-Ayed and Charles E. Blair. Computational di�culties of bilevel
linear programming. Operations Research, 38(3):556�560, 1990.

[Bar84] Jonathan F. Bard. Optimality conditions for the bilevel programming prob-
lem. Naval Research Logistics, 31(1):13�26, 1984.

[Bar88] Jonathan F. Bard. Convex two-level optimization. Mathematical Program-
ming, 40(1):15�27, 1988.

[Bar98] Jonathan F. Bard. Practical bilevel optimization: Algorithms and applica-
tions. In Nonconvex Optimization and its Applications, volume 30. Kluwer
Academic Publishers, 1998.

[Bea61] E. Martin L. Beale. The use of quadratic programming in stochastic linear
programming. Rand Corporation Report, P-2404-1, 1961.

[BF82] Jonathan F. Bard and James E. Falk. An explicit solution to the multi-
level programming problem. Computers & Operations Research, 9(1):77�
100, 1982.

[BHM09] Luce Brotcorne, Saïd Hana�, and Raïd Mansi. A dynamic programming
algorithm for the bilevel knapsack problem. Operations Research Letters,
37(3):215�218, 2009.

[BK84] Wayne F. Bialas and Mark H. Karwan. Two-level linear programming.
Management Science, 30(8):1004�1020, 1984.

[BKS80] Wayne F. Bilias, Mark H. Karwan, and J. Shaw. A parametric comple-
mentary pivot approach for two-level linear programming. Technical report,
State University of New York at Bu�alo, Operations Research Program,
1980.

[BL88] John R. Birge and François V. Louveaux. A multicut algorithm for two-
stage stochastic linear programs. European Journal of Operational Research,
34(3):384�392, 1988.

[BM73] Jerome Bracken and James T. McGill. Mathematical programs with op-
timization problems in the constraints. Operations Research, 21(1):37�44,
1973.

[BM90] Jonathan F. Bard and James T. Moore. A branch and bound algorithm for
the bilevel programming problem. SIAM Journal on Scienti�c and Statis-
tical Computing, 11(2):281�292, 1990.

[BR02] Patrizia Beraldi and Andrzej Ruszczy«ski. A branch and bound method for
stochastic integer problems under probabilistic constraints. Optimization
Methods and Software, 17(3):359�382, 2002.

156

BIBLIOGRAPHY

[BS07] Hans-Georg Beyer and Bernhard Sendho�. Robust optimization - a compre-
hensive survey. Computer Methods in Applied Mechanics and Engineering,
196:3190�3218, 2007.

[CAAK06] Myun-Seok Cheon, Shabbir Ahmed, and Faiz Al-Khayyal. A branch-reduce-
cut algorithm for the global optimization of probabilistically constrained
linear programs. Mathematical Programming, 108(2):617�634, 2006.

[Car10a] Claus C. Carøe. Decomposition in Stochastic Integer Programming. PhD
thesis, Institute for Mathematical Sciences, Dept. of Operations Research,
University of Copenhagen, Denmark, 2010.

[Car10b] Pierre Carpentier. Méthodes numériques en optimisation stochastique.
http://www.ensta.fr/~pcarpent/MNOS/ (Accessed 17 August 2010), 2010.

[CB98] Amy Cohn and Cynthia Barnhart. The stochastic knapsack problem with
random weights: A heuristic approach to robust transportation planning. In
Proceedings of the Triennial Symposium on Transportation Analysis (TRIS-
TAN III), 1998.

[CC59] Abraham Charnes and William W. Cooper. Chance-constrained program-
ming. Management Science, 6(1):73�79, 1959.

[CC95] Jean-Christophe Culioli and Guy Cohen. Optimisation stochastique sous
contraintes en espérance. Comptes rendus de l'Académie des sciences, Paris,
Série I, 320(6):753�758, 1995.

[CC04] Marco C. Campi and Giuseppe C. Cala�ore. Multiple Participant Decision
Making (eds.: J. Andrysek, M. Karny and J. Kracik), chapter Decision mak-
ing in an uncertain environment: The scenario based optimization approach,
pages 99�111. Advanced Knowledge International, 2004.

[CCS58] Abraham Charnes, William W. Cooper, and Gi�ord H. Symonds. Cost
horizons and certainty equivalents: An approach to stochastic programming
of heating oil. Management Science, 4(3):235�263, 1958.

[CF70] A. Victor Cabot and Richard L. Francis. Solving certain nonconvex
quadratic minimization problems by ranking the extreme points. Opera-
tions Research, 18(1):82�86, 1970.

[CMS07] Benoît Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel
optimization. Annals of Operations Research, 153(1):235�256, 2007.

[CN77] Wilfred Candler and Roger D. Norton. Multilevel programming. Technical
report, World Bank Development Research Center, Washington, D.C., 1977.

157

http://www.ensta.fr/~pcarpent/MNOS/

BIBLIOGRAPHY

[CS99] Claus C. Carøe and Rüdiger Schultz. Dual decomposition in stochastic
integer programming. Operations Research Letters, 24:37�45, 1999.

[CSW93] Robert L. Carraway, Robert L. Schmidt, and Lawrence R. Weatherford.
An algorithm for maximizing target achievement in the stochastic knapsack
problem with normal returns. Naval research logistics, 40(2):161�173, 1993.

[CT82] Wilfred Candler and Robert J. Townsley. A linear two level programming
problem. Computers and Operations Research, 9(1):59�76, 1982.

[CT98] Claus C. Carøe and Jørgen Tind. L-shaped decomposition of two-stage
stochastic programs with integer recourse. Mathematical Programming,
83(3):451�464, 1998.

[DAK07] Xiaosong Ding and Faiz Al-Khayyal. Accelerating convergence of cutting
plane algorithms for disjoint bilinear programming. Journal of Global Op-
timization, 38(3):421�436, 2007.

[Dan55] George Dantzig. Linear programming under uncertainty. Management Sci-
ence, 1:197�206, 1955.

[Dem02] Stephan Dempe. Foundations of bilevel programming. In Nonconvex Op-
timization and its Applications, volume 61. Kluwer Academic Publishers,
2002.

[Dem03] Stephan Dempe. Annotated bibliography on bilevel programming and math-
ematical programs with equilibrium constraints. Optimization: A Journal of
Mathematical Programming and Operations Research, 52(3):333�359, 2003.

[DM61] George Dantzig and Albert Madansky. On the solution of two-stage linear
programs under uncertainty. In Proceedings of the 4th Berkeley Symposium
on Mathematical Statistics and Probability, volume 1, pages 165�176. Uni-
versity of California, Berkeley, 1961.

[DPR00] Darinka Dentcheva, András Prékopa, and Andrzej Ruszczy«ski. Concavity
and e�cient points of discrete distributions in probabilistic programming.
Mathematical Programming, 89(1):55�77, 2000.

[DR00] Stephan Dempe and K. Richter. Bilevel programming with knapsack con-
straints. Central European Journal of Operations Research, 8(2):93�107,
2000.

[Dra72] Mihai Dragomirescu. An algorithm for the minimum-risk problem of
stochastic programming. Operations Research, 20(1):154 � 164, 1972.

[DRS05] Kedar Dhamdhere, R. Ravi, and Mohit Singh. On two-stage stochastic
minimum spanning trees. Lecture Notes in Computer Science, 3509:321�
334, 2005.

158

BIBLIOGRAPHY

[DST03] Shane Dye, Leen Stougie, and Asgeir Tomasgard. The stochastic single
resource service-provision problem. Naval Research Logistics, 50(8):869�
887, 2003.

[DW60] George Dantzig and Philip Wolfe. Decomposition principle for linear pro-
grams. Operations Research, 8(1):101�111, 1960.

[EN67] Yuri M. Ermol'ev and Z. V. Nekrylova. The method of stochastic gradients
and its applications. In The Theory of Optimal Solutions [in Russian],
volume 1. IK AN UkrSSR, Kiev, 1967.

[ENW95] Yuri M. Ermoliev, Vladimir I. Norkin, and Roger J-B. Wets. The minimiza-
tion of semicontinuous functions: Molli�er subgradients. SIAM Journal on
Control and Optimization, 33(1):149�167, 1995.

[Fal73] James E. Falk. A linear max-min problem. Mathematical Programming,
5(1):169�188, 1973.

[FAM81] José Fortuny-Amat and Bruce McCarl. A representation and economic in-
terpretation of a two-level programming problem. Journal of the Operational
Research Society, 32:783�792, 1981.

[Fe98] Amos Fiat and Gerhard J. Woeginger (eds.). Online algorithms: The state
of the art. In Lecture Notes in Computer Science. Springer-Verlag, 1998.

[FLLP08] Bernard Fortz, Martine Labbé, François V. Louveaux, and Michael Poss. A
non linear approach to the stochastic knapsack problem with recourse. In
VI ALIO/EURO Workshop on Applied Combinatorial Optimization, 2008.

[FP01] Christodoulos A. Floudas and Panos M. Pardalos. Encyclopedia of Opti-
mization, volume 6, chapter Bilevel linear programming: Complexity, equiv-
alence to mimax, concave programs. Kluwer Academic Publishers, 2001.

[FV94] Christodoulos A. Floudas and Vishy Visweswaran. Handbook of Global Op-
timization (eds.: R. Horst and P.M. Pardalos), chapter Quadratic optimiza-
tion, pages 217�270. Kluwer Academic Publishers, 1994.

[GI99] Ashish Goel and Piotr Indyk. Stochastic load balancing and related prob-
lems. In 40th Annual Symposium on Foundations of Computer Science,
pages 579�586, 1999.

[GLLH10] Alexei A. Gaivoronski, Abdel Lisser, Rafael Lopez, and Xu Hu. Knapsack
problem with probability constraints. Journal of Global Optimization (On-
line First), 2010. http://dx.doi.org/10.1007/s10898-010-9566-0 (Accessed
17 August 2010).

159

http://dx.doi.org/10.1007/s10898-010-9566-0

BIBLIOGRAPHY

[GPRS04] Anupam Gupta, Martin Pál, R. Ravi, and Amitabh Sinha. Boosted sam-
pling: Approximation algorithms for stochastic optimization. In Proceed-
ings of the 36th Annual ACM Symposium on Theory of Computing (STOC),
pages 417�426, 2004.

[GR09] Vineet Goyal and R. Ravi. Chance constrained knapsack problem with ran-
dom item sizes. http://www.mit.edu/~goyalv/stoch{_}knapsack.pdf (Ac-
cessed 17 August 2010), 2009.

[GU77] Giorgio Gallo and Aydin Ülkücü. Bilinear programming: An exact algo-
rithm. Mathematical Programming, 12(1):173�194, 1977.

[HB06] Pascal Van Hentenryck and Russell Bent. Online Stochastic Combinatorial
Optimization. MIT Press, 2006.

[HJS92] Pierre Hansen, Brigitte Jaumard, and Gilles Savard. New branch-and-bound
rules for linear bilevel programming. SIAM Journal on Scienti�c and Sta-
tistical Computing, 13(5):1194�1217, 1992.

[HS91] Julia L. Higle and Suvrajeet Sen. Stochastic decomposition: An algorithm
for two-stage linear programs with recourse. Mathematics of Operations
Research, 16(3):650�669, 1991.

[HS96] Julia L. Higle and Suvrajeet Sen. Stochastic decomposition: A statisti-
cal method for large scale stochastic linear programming. In Nonconvex
Optimization and its Applications, volume 8. Kluwer Academic Publishers,
1996.

[HT89] Reiner Horst and Nguyen Van Thoai. Modi�cation, implementation and
comparison of three algorithms for globally solving linearly constrained con-
cave minimization problems. Computing, 42:271�289, 1989.

[HT96] Reiner Horst and Hoang Tuy. Global Optimization: Deterministic Ap-
proaches. Springer-Verlag, 3. edition, 1996.

[HUL93a] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and
minimization algorithms: Part 1: Fundamentals. In Grundlehren der math-
ematischen Wissenschaften. Springer-Verlag, 1993.

[HUL93b] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and
minimization algorithms: Part 2: Advanced theory and bundle methods. In
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1993.

[HvdV06] Willem K. Klein Haneveld and Maarten H. van der Vlerk. Integrated chance
constraints: Reduced forms and an algorithm. Computational Management
Science, 3(4):245�269, 2006.

160

http://www.mit.edu/~goyalv/stoch{_}knapsack.pdf

BIBLIOGRAPHY

[IA92] Yo Ishizuka and Eitaro Aiyoshi. Double penalty method for bilevel opti-
mization problems. Annals of Operations Research, 34(1):73�88, 1992.

[IKMM04] Nicole Immorlica, David Karger, Maria Minko�, and Vahab S. Mirrokni.
On the costs and bene�ts of procrastination: approximation algorithms for
stochastic combinatorial optimization problems. In Proceedings of the 15th
Annual ACM-SIAM Symposium on Discrete Algorithms, Session 8B, pages
691�700, 2004.

[JF88] Joaquim J. Júdice and Ana M. Faustino. The solution of the linear bilevel
programming problem by using the linear complementarity problem. Inves-
tigação Operacional, 8:77�95, 1988.

[JF94] Joaquim J. Júdice and Ana M. Faustino. The linear-quadratic bilevel pro-
gramming problem. Information Systems and Operational Research, 32:87�
98, 1994.

[Kal74] Peter Kall. Approximations to stochastic programs with complete �xed
recourse. Numerische Mathematik, 22:333�339, 1974.

[Kal76] Peter Kall. Stochastic Linear Programming. Springer-Verlag, 1976.

[Kal94] Peter Kall. Solution methods in stochastic programming. In Jacques Henry
and Jean-Pierre Yvon, editors, System Modelling and Optimization, vol-
ume 197 of Lecture Notes in Control and Information Sciences, pages 1�22.
Springer Berlin / Heidelberg, 1994.

[KBLL09] Stefanie Kosuch, Pierre Le Bodic, Janny Leung, and Abdel Lisser. On
a stochastic bilevel programming problem with knapsack constraints. In
Proceedings of the International Network Optimization Conference, 2009.

[KBLL10] Stefanie Kosuch, Pierre Le Bodic, Janny Leung, and Abdel Lisser. On a
stochastic bilevel programming problem with knapsack constraints. Net-
works, Accepted for publication, 2010.

[KHSvdV95] Willem K. Klein Haneveld, Leen Stougie, and Maarten H. van der Vlerk.
On the convex hull of the simple integer recourse objective function. Annals
of Operations Research, 56(1):209�224, 1995.

[KHSvdV96] Willem K. Klein Haneveld, Leen Stougie, and Maarten H. van der Vlerk.
An algorithm for the construction of convex hulls in simple integer recourse
programming. Annals of Operations Research, 64(1):67�81, 1996.

[KHSvdV06] Willem K. Klein Haneveld, Leen Stougie, and Maarten H. van der Vlerk.
Simple integer recourse models: convexity and convex approximations.
Mathematical Programming, 108(2):435�473, 2006.

161

BIBLIOGRAPHY

[KHvdV94] Willem K. Klein Haneveld and Maarten H. van der Vlerk. On the expected
value function of a simple integer recourse problem with random technology
matrix. Journal of Computational and Applied Mathematics, 56:45�53, 1994.

[KKMU07] Irit Katriel, Claire Kenyon-Mathieu, and Eli Upfal. Commitment under
uncertainty: Two-stage stochastic matching problems. Lecture Notes in
Computer Science, 4596:171�182, 2007.

[KL90] Charles D. Kolstad and Leon S. Lasdon. Derivative estimation and compu-
tational experience with large bilevel mathematical programs. Journal of
Optimization Theory and Applications, 65:485�499, 1990.

[KL09] Stefanie Kosuch and Abdel Lisser. On a two-stage stochastic knapsack
problem with probabilistic constraint. In Proceedings of the 8th Cologne-
Twente Workshop on Graphs and Combinatorial Optimization, 2009.

[KL10a] S. Kosuch and A. Lisser. On two-stage stochastic knapsack prob-
lems. Discrete Applied Mathematics, In Press, Corrected Proof,
2010. http://www.sciencedirect.com/science/article/B6TYW-507DJM2-1/

2/5e433a7491637bdf8e4a610ff4df45f2 (Accessed 17 August 2010).

[KL10b] Stefanie Kosuch and Abdel Lisser. Stochastic shortest path problem with
delay excess penalty. Electronic Notes in Discrete Mathematics, 36(1):511�
518, 2010.

[KL10c] Stefanie Kosuch and Abdel Lisser. Upper bounds for the 0-1 stochastic
knapsack problem and a b&b algorithm. Annals of Operations Research,
176(1):77�93, 2010.

[KLL10] Stefanie Kosuch, Marc Letournel, and Abdel Lisser. On a stochastic knap-
sack problem. In Proceedings of the 9th Cologne-Twente Workshop on
Graphs and Combinatorial Optimization, 2010.

[Klo09] Olivier Klopfenstein. Tractable algorithms for chance-constrained combina-
torial problems. RAIRO-Operations Research, 43:157�187, 2009.

[Klo10] Olivier Klopfenstein. Solving chance-constrained combinatorial problems to
optimality. Computational Optimization and Applications, 45(3):607�638,
2010.

[KM93] Peter Kall and Janos Mayer. Slp-ior: On the design of a workbench for
testing slp codes. Revista Investigacion Operacional, 14:148�161, 1993.

[KM05] Peter Kall and Janos Mayer. Stochastic Linear Programming: Models, The-
ory, and Computation. Kluwer Academic Publishers, 2005.

162

http://www.sciencedirect.com/science/article/B6TYW-507DJM2-1/2/5e433a7491637bdf8e4a610ff4df45f2
http://www.sciencedirect.com/science/article/B6TYW-507DJM2-1/2/5e433a7491637bdf8e4a610ff4df45f2

BIBLIOGRAPHY

[KN08] Olivier Klopfenstein and Dritan Nace. A robust approach to the chance-
constrained knapsack problem. Operations Research Letters, 36(5):628�632,
2008.

[Kol67] Peter J. Kolesar. A branch and bound algorithm for the knapsack problem.
Management Science, 13(9):723�735, 1967.

[Kon76] Hiroshi Konno. A cutting plane algorithm for solving bilinear programs.
Mathematical Programming, 11(1):14�27, 1976.

[KRT97] Jon Kleinberg, Yuval Rabani, and Éva Tardos. Allocating bandwidth for
bursty connections. In Proceedings of the 29th Annual ACM Symposium on
Theory of Computing, pages 664�673, 1997.

[KS06] Nan Kong and Andrew J. Schaefer. A factor 1
2
approximation algorithm for

two-stage stochastic matching problems. European Journal of Operational
Research, 172(3):740�746, 2006.

[KSH02] Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de-Mello. The
sample average approximation method for stochastic discrete optimization.
SIAM Journal on Optimization, 12(2):479�502, 2002.

[KW52] Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum
of a regression function. Annals of Mathematical Statistics, 23(3):462�466,
1952.

[KW94] Peter Kall and Stein W. Wallace. Stochastic Programming. John Wiley &
Sons, Chichester, 1994.

[KY03] Harold J. Kushner and George Yin. Stochastic Approximation and Recursive
Algorithms and Applications. Springer-Verlag, 2. edition, 2003.

[Lag98] Manuel Laguna. Applying robust optimization to capacity expansion of
one location in telecommunications with demand uncertainty. Management
Science, 44(11):101�110, 1998.

[LHZ01] G. S. Liu, J. Y. Han, and J. Z. Zhang. Exact penalty functions for con-
vex bilevel programming problems. Journal of Optimization Theory and
Applications, 110(3):621�643, 2001.

[LL93] Gilbert Laporte and François V. Louveaux. The integer L-shaped method
for stochastic integer programs with complete recourse. Operations Research
Letters, 13(3):133�142, 1993.

[LLH09] Abdel Lisser, Rafael Lopez, and Xu Hu. Stochastic quadratic knapsack with
recourse. In INOC 2009, 2009.

163

BIBLIOGRAPHY

[LLM92] Gilbert Laporte, François V. Louveaux, and Hélène Mercure. The vehi-
cle routing problem with stochastic travel times. Transportation Science,
26(3):161�170, 1992.

[LLS05] Constantino M. Lagoa, Xiang Li, and Mario Sznaier. Probabilistically con-
strained linear programs and risk-adjusted controller design. SIAM Journal
on Optimization, 15(3):938�951, 2005.

[Lop10] Rafael Lopez. Stochastic Quadratic Knapsack Problems and Semide�nite
Programming. PhD thesis, LRI, Université Paris Sud, France, 2010.

[LVBL98] Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret.
Applications of second-order cone programming. Linear Algebra and its
Applications, 284:193�228, 1998.

[LvdV93] François V. Louveaux and Maarten H. van der Vlerk. Stochastic program-
ming with simple integer recourse. Mathematical Programming, 61:301�325,
1993.

[LY98] Pierre L'Écuyer and George Yin. Budget dependent convergence rate of
stochastic approximation. SIAM Journal on Optimization, 8(1):217�247,
1998.

[LY99] Zhang Li'ang and Zhang Yin. Approximation for knapsack problems
with multiple constraints. Journal of Computer Science and Technology,
14(4):289�297, 1999.

[May79] Janos Mayer. Survey of Mathematical Programming (ed.: A. Prékopa),
volume 2, chapter A nonlinear programming method for the solution of
a stochastic programming model of A. Prékopa, pages 129�139. North Hol-
land Publishing Co., 1979.

[May88] Janos Mayer. Probabilistic constrained programming: A reduced gradient
algorithm implemented on pc. Technical Report WP-88-39, International
Institute for Applied Systems Analysis (IIASA), Austria, 1988.

[MOS10] MOSEK ApS. The MOSEK optimization tools manual. Version 6.0 (Revi-
sion 61), 1998-2010. http://www.optirisk-systems.com/manuals/MOSEK.pdf
(Accessed 17 August 2010).

[MS05] Patrice Marcotte and Gilles Savard. Graph Theory and Combinatorial Opti-
mization, chapter Bilevel programming: A combinatorial perspective, pages
191�217. Springer US, 2005.

[MT77] Silvano Martello and Paolo Toth. An upper bound for the zero-one knap-
sack problem and a branch and bound algorithm. European Journal of
Operational Research, 1(3):169�175, 1977.

164

http://www.optirisk-systems.com/manuals/MOSEK.pdf

BIBLIOGRAPHY

[MW65] Bruce L. Miller and Harvey M. Wagner. Chance constrained programming
with joint constraints. Operations Research, 13(6):930�945, 1965.

[MW97] David P. Morton and R. Kevin Wood. Advances in Computational and
Stochastic Optimization, Logic Programming, and Heuristic Search, chap-
ter On a stochastic knapsack problem and generalizations, pages 149�168.
Kluwer Academic Publishers, 1997.

[MZ96] Patrice Marcotte and Dao Li Zhu. Exact and inexact penalty methods for
the generalized bilevel programming problem. Mathematical Programming,
74(2):141�157, 1996.

[Nem03] Arkadi Nemirovski. On tractable approximations of randomly perturbed
convex constraints. In Proceedings of the 42nd IEEE Conference on Decision
and Control, volume 3, pages 2419�2422, 2003.

[NH76] Mikhail Borisovich Nevel'son and Rafail Zalmanovich Has'minskii. Stochas-
tic approximation and recursive estimation. In Translations of Mathematical
Monographs. American Mathematical Society, 1976.

[NS04] Arkadi Nemirovski and Alexander Shapiro. Probabilistic and Randomized
Methods for Design under Uncertainty (eds.: G. Cala�ore and F. Dabbene),
chapter Scenario approximation of chance constraints, pages 3�48. Springer
London, 2004.

[NS06] Arkadi Nemirovski and Alexander Shapiro. Convex approximations of
chance constrained programs. SIAM Journal on Optimization, 17(4):969�
996, 2006.

[NS07] Lewis Ntaimo and Suvrajeet Sen. A branch-and-cut algorithm for two-stage
stochastic mixed-binary programs with continuous �rst-stage variables. Int.
J. Comput. Sci. Eng., 3(3):232�241, 2007.

[NS08] Lewis Ntaimo and Suvrajeet Sen. A comparative study of decomposition
algorithms for stochastic combinatorial optimization. Computational Opti-
mization and Applications, 40(3):299�319, 2008.

[NT08] Lewis Ntaimo and Matthew W. Tanner. Computations with disjunctive
cuts for two-stage stochastic mixed 0-1 integer programs. Journal of Global
Optimization, 41(3):365�384, 2008.

[NW86] Larry Nazareth and Roger J-B. Wets. Algorithms for stochastic programs:
The case of non-stochastic tenders. Mathematical Programming Studies,
28:1�28, 1986.

[Ols76] Paul Olsen. Discretizations of multistage stochastic programming problems.
Mathematical Programming Studies, 6, 1976.

165

BIBLIOGRAPHY

[OPS10] Osman Y. Özaltin, Oleg A. Prokopyev, and Andrew J. Schaefer. The bilevel
knapsack problem with stochastic right-hand sides. Operations Research
Letters, 38(4):328�333, 2010.

[OZ95] Jiri Outrata and Jochem Zowe. A numerical approach to optimization prob-
lems with variational inequality constraints. Mathematical Programming,
68:105�130, 1995.

[Pan93] V. M. Panin. Finite algorithm to �nd the saddle point of a quadratic function
subject to linear constraints. Cybernetics and Systems Analysis, 29(1):35�
46, 1993.

[PFaS96] Erica L. Plambeck, Bor-Ruey Fu, and Stephen M. Robinson andRajah
Suri. Sample-path optimization of convex stochastic performance functions.
Mathematical Programming, 75(2):137�176, 1996.

[Pol90] Boris T. Polyak. New method of stochastic approximation type. Automation
and Remote Control, 51:937�946, 1990.

[Pré70] András Prékopa. On probabilistic constrained programming. In Proceedings
of the Princeton Symposium on Mathematical Programming, pages 113�138.
Princeton University Press, 1970.

[Pré72] András Prékopa. A class of stochastic programming decision problems.
Mathematische Operationsforschung und Statistik, 3(5):349�354, 1972.

[Pré90] András Prékopa. Dual method for the solution of a one-stage stochastic
programming problem with random rhs obeying a discrete probability dis-
tribution. Mathematical Methods of Operations Research, 34(6):441�461,
1990.

[Pré95] András Prékopa. Stochastic Programming. Kluwer Academic Publishers,
1995.

[PVB98] András Prékopa, Béla Vizvári, and Tamás Badics. New Trends in Math-
ematical Programming (eds.: F. Giannessia et al.), chapter Programming
under probabilistic constraint with discrete random variables, pages 235�
255. Kluwer Academic Publishers, 1998.

[PW97] Michael Patriksson and Laura Wynter. Stochastic nonlinear bilevel program-
ming. Technical report, PRiSM, Université de Versailles Saint-Quentin-en-
Yvelines, 1997.

[PW99] Michael Patriksson and Laura Wynter. Stochastic mathematical programs
with equilibrium constraints. Operations Research Letters, 25(4):159�167,
1999.

166

BIBLIOGRAPHY

[RM51] Herbert Robbins and Sutton Monro. A stochastic approximation method.
Annals of Mathematical Statistics, 22(3):400�407, 1951.

[RR02] Vicente Rico-Ramirez. Two-stage stochastic linear programming: A tutorial.
SIAG/OPT News-and-Views Newsletter, 13(1):8�14, 2002.

[RS06] R. Ravi and Amitabh Sinha. Hedging uncertainty: Approximation algo-
rithms for stochastic optimization problems. Mathematical Programming,
108(1):97�114, 2006.

[Rus86] Andrzej Ruszczy«ski. A regularized decomposition method for minimizing a
sum of polyhedral functions. Mathematical Programming, 35:309�333, 1986.

[Rus93] Andrzej Ruszczy«ski. Regularized decomposition of stochastic programs:
Algorithmic techniques and numerical results. Technical Report WP-93-
21, International Institute for Applied Systems Analysis (IIASA), Aus-
tria, 1993. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

55.3955&rep=rep1&type=pdf (Accessed 17 August 2010).

[Rus02] Andrzej Ruszczy«ski. Probabilistic programming with discrete distributions
and precedence constrained knapsack polyhedra. Mathematical Program-
ming, 93(2):195�215, 2002.

[Sav89] Gilles Savard. Contributions à la programmation mathématique a deux
niveaux. PhD thesis, Ecole Polytechnique, Université de Montréal, 1989.

[Sch93] Rüdiger Schultz. Continuity properties of expectation functions in stochastic
integer programming. Mathematics of Operations Research, 18(3):578�589,
1993.

[Sch95] Rüdiger Schultz. On structure and stability in stochastic programs with
random technology matrix and complete integer recourse. Mathematical
Programming, 70:73�89, 1995.

[SDR09] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures
on stochastic programming: Modeling and theory. In MPS/SIAM Series on
Optimization, volume 9. SIAM-Society for Industrial and Applied Mathe-
matics, 2009.

[SH98] Alexander Shapiro and Tito Homem-de-Mello. A simulation-based approach
to two-stage stochastic programming with recourse. Mathematical Program-
ming, 81(3):301�325, 1998.

[SH05] Suvrajeet Sen and Julia L. Higle. The C3 theorem and a D2 algorithm
for large scale stochastic mixed-integer programming: Set convexi�cation.
Mathematical Programming, 104(1):1�20, 2005.

167

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.3955&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.3955&rep=rep1&type=pdf

BIBLIOGRAPHY

[Sha96] Alexander Shapiro. Simulation-based optimization: Convergence analysis
and statistical inference. Stochastic Models, 12(3):425�454, 1996.

[Sha07] Alexander Shapiro. Stochastic programming approach to optimization un-
der uncertainty. Mathematical Programming, 112(1):183�220, 2007.

[SIB97] Kiyotaka Shimizu, Yo Ishizuka, and Jonathan F. Bard. Nondi�erentiable
and two-level mathematical programming. Kluwer Academic Publishers,
1997.

[Sio58] Maurice Sion. On general minimax theorems. Paci�c Journal of Mathemat-
ics, 81(1):171�176, 1958.

[SS80] Hanif D. Sherali and C. M. Shetty. A �nitely convergent algorithm for
bilinear programming problems using polar cuts and disjunctive face cuts.
Mathematical Programming, 19(1):14�31, 1980.

[SS04] Chaitanya Swamy and David B. Shmoys. The sample average approximation
method for 2-stage stochastic optimization. http://www.math.uwaterloo.

ca/~cswamy/papers/SAAproof.pdf (2008 version; Accessed 17 August 2010),
2004.

[SS06a] Suvrajeet Sen and Hanif D. Sherali. Decomposition with branch-and-cut ap-
proaches for two-stage stochastic mixed-integer programming. Mathematical
Programming, 106(2):203�223, 2006.

[SS06b] David B. Shmoys and Chaitanya Swamy. An approximation scheme for
stochastic linear programming and its application to stochastic integer pro-
grams. Journal of the ACM, 53(6):978�1012, 2006.

[SS06c] Chaitanya Swamy and David B. Shmoys. Algorithms column: Approxima-
tion algorithms for 2-stage stochastic optimization problems. ACM SIGACT
News, 37(1):33�46, 2006.

[SS07] David B. Shmoys and Mauro Sozio. Approximation algorithms for 2-
stage stochastic scheduling problems. Lecture Notes in Computer Science,
4513:145�157, 2007.

[SSL07] Xiaoling Sun, Hongbo Sheng, and Duan Li. An exact algorithm for 0-
1 polynomial knapsack problems. Journal of Industrial and Management
Optimization, 3(2):223�232, 2007.

[SSvdV98] Rüdiger Schultz, Leen Stougie, and Maarten H. van der Vlerk. Solving
stochastic programs with integer recourse by enumeration: a framework
using gröbner basis reductions. Math. Program., 83(2):229�252, 1998.

168

http://www.math.uwaterloo.ca/~cswamy/papers/SAAproof.pdf
http://www.math.uwaterloo.ca/~cswamy/papers/SAAproof.pdf

BIBLIOGRAPHY

[Sta52] Heinrich Stackelberg. The theory of market economy. Oxford: Oxford Uni-
versity Press, 1952.

[SvdV03] Leen Stougie and Maarten H. van der Vlerk. Approximation in stochastic
integer programming. Technical Report 03A14, University of Groningen,
Research Institute SOM, 2003.

[SW69] Richard Van Slyke and Roger J-B. Wets. L-shaped linear programs with
applications to optimal control and stochastic programming. SIAM Journal
on Applied Mathematics, 17(4):638�663, 1969.

[SZH09] Suvrajeet Sen, Zhihong Zhou, and Kai Huang. Enhancements of two-stage
stochastic decomposition. Computers & Operations Research, 36(8):2434�
2439, 2009.

[Tam76] Ebu Tamm. The quasiconvexity of the probability function and the quantile
function. Eesti NSV Teaduste Akademia Toimetised (News of the Estonian
Academy of Sciences) Füüs. Mat., 25(2):141�145, 1976.

[Tam77] Ebu Tamm. On g-concave functions and probability measures. Eesti NSV
Teaduste Akademia Toimetised (News of the Estonian Academy of Sciences)
Füüs. Mat., 26(4):376�379, 1977.

[VAK+03] Bram Verweij, Shabbir Ahmed, Anton J. Kleywegt, George Nemhauser,
and Alexander Shapiro. The sample average approximation method applied
to stochastic routing problems: A computational study. Computational
Optimization and Applications, 24:289�333, 2003.

[VC94] Luís N. Vicente and Paul H. Calamai. Bilevel and multilevel programming:
A bibliography review. Journal of Global Optimization, 5(3):291�306, 1994.

[vdV95] Maarten H. van der Vlerk. Stochastic Programming with Integer Recourse.
PhD thesis, University of Groningen, The Netherlands, 1995.

[vdV04] Maarten H. van der Vlerk. Convex approximations for complete integer
recourse models. Mathematical Programming, 99(2):297�310, 2004.

[vN28] John von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische
Annalen, 100(1):295�320, 1928.

[VS77] Harish Vaish and C. M. Shetty. A cutting plane algorithm for the bilinear
programming problem. Naval Research Logistics, 24(1):83�94, 1977.

[VSJ96] Luís N. Vicente, Gilles Savard, and Joaquim J. Júdice. Discrete linear bilevel
programming problem. Journal of Optimization Theory and Applications,
89(3):597�614, 1996.

169

BIBLIOGRAPHY

[WA93] D. J. White and G. Anandalingam. A penalty function approach for solving
bi-level linear programs. Journal of Global Optimization, 3(4):397�419, 1993.

[Wer04] Adrian S. Werner. Bilevel stochastic programming problems: analysis and
application to telecommunications. PhD thesis, Department of Industrial
Economics and Technology Management, Norwegian University of Science
and Technology, 2004.

[Wet66] Roger Wets. Programming under uncertainty: The complete problem. Prob-
ability Theory and Related Fields, 4(4):316�339, 1966.

[Wet83] Roger J-B. Wets. Solving stochastic programs with simple recourse. Stochas-
tics, 10:219�242, 1983.

[Wol80] Richard D. Wollmer. Two stage linear programming under uncertainty with
0-1 integer �rst stage variables. Mathematical Programming, 19(1):279�288,
1980.

[WW67] David W. Walkup and Roger J.-B. Wets. Stochastic programs with recourse.
SIAM. Journal on Applied Mathematics, 15(5):1299�1314, 1967.

[WZ98] Thomas Winter and Uwe T. Zimmermann. Discrete online and real-time op-
timization. In Proceedings of the 15th IFIP World Computer Congress, Bu-
dapest/Vienna, 1998. http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.3.2549&rep=rep1&type=pdf.

[YK91] Yasutoshi Yajima and Hiroshi Konno. E�cient algorithms for solving rank
two and rank three bilinear programming problems. Journal of Global Op-
timization, 1(2):155�171, 1991.

[Zha09] Xiaoyan Zhang. A note on Stackelberg games and Nash games. International
Journal of Business and Management, 1(5), 2009.

170

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.2549&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.2549&rep=rep1&type=pdf

	Contents
	Introduction
	Remark on the structure and contents of this thesis
	Summaries of the main chapters
	Preliminaries

	The Simple Recourse Knapsack Problem
	Introduction
	Simple Recourse Problems
	The Simple Recourse Knapsack Problem (SRKP)
	Solving Simple Recourse Problems with continuous recourse
	Solving Simple Recourse Knapsack Problems

	Mathematical formulation
	Properties of the SRKP

	Problem Solving Method
	The Stochastic Gradient Algorithm and Approximation by Convolution Method
	The Branch-and-Bound Algorithm

	Numerical results
	The continuous SRKP
	The combinatorial SRKP

	Concluding remarks and future work

	The Chance-Constrained Knapsack Problem
	Introduction
	Chance-Constrained Problems
	Chance-Constrained Knapsack Problems (CCKP)
	Solving Chance-Constrained Problems
	Solving Chance-Constrained Knapsack Problems

	Mathematical formulation
	Properties of the CCKP

	Problem Solving Method
	The Stochastic Arrow-Hurwicz (SAH) Algorithm
	The Branch-and-Bound Framework

	Convergence of the SAH Algorithm
	Theoretical versus practical convergence
	Numerical convergence tests

	Solving the (combinatorial) CCKP - Numerical Results
	Concluding remarks and future work

	The Two-Stage Knapsack Problem with Full Recourse
	Introduction
	Two-Stage Problems
	The Two-Stage Knapsack Problems with full recourse
	Solving Two-Stage Problems
	Approximation Algorithms for Two-Stage Problems
	Solving Two-Stage Knapsack Problems

	The Two-Stage Knapsack Problem with normal weight distributions (TSKP)
	Mathematical formulation and properties
	Computing upper bounds on the optimal solution value of the TSKP
	Computing lower bounds on the optimal solution value of the TSKP
	Branch-and-Bound Algorithm
	Numerical results

	The Two-Stage Knapsack Problem with discrete weight distributions (TSKD)
	Mathematical formulation and properties
	Equivalence of the AddTSKD and the MCKP
	Non-approximability results for the TSKD and some special cases
	Final Remark

	Concluding remarks and future work

	The Stochastic Bilevel Problem with Knapsack Chance-Constraint
	Introduction
	Bilevel Problems
	Stochastic Bilevel Problems and Bilevel Problems with Knapsack Constraint
	Solving Bilevel Problems
	Solving Stochastic Bilevel Problems

	Mathematical formulation and an illustrative example
	From the SLBP to the (Deterministic Equivalent) Linear Bilevel Problem (LBP)
	From the LBP to the Global Linear Complementarity Problem (GLCP)
	Calculating upper bounds
	Proving upper and lower bounds
	Stopping criteria
	Convergence of the algorithm

	Modified iterative minmax scheme
	Numerical experiments
	Data Generation
	Numerical Results

	Improved bounds
	Methods to solve Bilinear Optimization Problems with separable, linear constraints

	Concluding remarks and future work

	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography

