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Abstract

In this paper the Two-Stage Knapsack problem with random weights is
studied under the aspect of approximability. We assume finite probability
distributions for the weights and show that, unless P=NP, the so obtained
problem cannot be approximated in polynomial time within a better ratio
than K~1/2 (where K is the number of second-stage scenarios). We further
study the special cases where in the second stage items can only be added
or only be removed, but not both. Positive approximation results are given
for three particular cases, namely linearly dependent first- and second-stage
rewards, the polynomial scenario model and the case where the number
of scenarios is assumed to be a constant. To the best of our knowledge,
this is the first study of a two-stage knapsack problem under the aspect of
approximability and the first time a non-approximability result has been
proven for a stochastic knapsack problem of any kind.

Keywords: two-stage stochastic programming, stochastic knapsack
problem, non-approximation, approximation algorithms

1. Introduction

The knapsack problem is a widely studied combinatorial optimization
problem. Special interest arises from numerous real life applications for ex-
ample in logistics, network optimization and scheduling. The basic problem
consists in choosing a subset out of a given set of items such that the total
weight (or size) of the subset does not exceed a given limit (the capacity of
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the knapsack) and the total reward of the subset is maximized (for a survey
on (deterministic) knapsack problems see the book by Kellerer et al. [1]).
However, most real life problems are non-deterministic in the sense that
some of the parameters are not (exactly) known at the moment when the
decision of which items to choose has to be made. For example, the avail-
able capacity might be unknown due to delays in previous jobs or the item
rewards might depend on market fluctuations ([2],[3],[4]). One possibility to
model and solve an optimization problem in the presence of uncertainty is
to formulate it as a stochastic programming problem.

In this paper we study a stochastic knapsack problem where the item weights
are random. Several variants of stochastic knapsack problems with random
item weights (or sizes) have been studied so far and the interest seems still
to increase. Among the publications recently released you can find papers
on the simple-recourse knapsack problem ([5]), the chance-constrained knap-
sack problem ([6]), knapsack problems with recourse ([7]) as well as dynamic
settings of the stochastic knapsack problem ([g]).

The problem studied in this work has a two-stage formulation. Two-stage
optimization models (also known as optimization models with recourse) are
important tools in decision making with uncertain parameters as in many
cases a corrective decision can or even has to be made once the exact pa-
rameters are known. Therefore, they have been extensively studied since
they were first introduced in the literature by Dantzig in 1955 (see [9]). For
our stochastic knapsack model we assume that in the first stage, while the
item weights are still unknown, a pre-decision of which items to include in
the knapsack can be made. This decision can be corrected once all the item
weights have come to be known. More precisely, items can be removed at a
certain cost and/or additional items added, which naturally yields a smaller
reward than in the first stage. We call the resulting problem the Two-Stage
Knapsack problem with random weights (T'SK P).

One can imagine various problems that could be modeled as TSK Ps. In
fact, this is true for any problem that in its deterministic form can be mod-
eled as a knapsack problem and where one can think of cases where the
weights are uncertain and thus a short-term correction of the decision might
be needed once the weights are known for certain. For instance, take the
example where the beds of a hotel complex or the seats of an airplane have
to be filled, without knowing if there might be later cancellations or if an
overbooking will lead to an excess of the capacity (see also section where
the former example will be given more in detail). In logistics one might
have to schedule a fleet without knowing the exact sizes of the goods to be
transported: If, in the end, there is some spare space, this might be filled



with supplementary items on short notice. In case of an overload, a penalty
might have to be paid to the un- or not fully served customers.

In this study of the T'SK P we assume the random weight vector to be dis-
cretely distributed, i.e., to only admit a finite number of realizations with
non-zero probability. In fact, Kleywegt et al. [10] have shown that a stochas-
tic combinatorial optimization problem can, under some mild assumptions,
be approximated to any desired precision by replacing the underlying dis-
tribution by a finite random sample.

It is well known that in the case of finite weight distributions the T'SK P
can be equivalently reformulated as a deterministic linear combinatorial pro-
gramming problem (see e.g. [7]). However, it has been shown that two-stage
problems with discrete distributions on (some of) the parameters are in gen-
eral #P-hard (even in the case of continuous decision variables, see [11]).
Moreover, the number of constraints and binary decision variables in the
deterministic reformulation grows with the number of scenarios and is thus
typically very large, or even exponential in the number of items (e.g., if
we assume the random weights to be independently distributed). Solving
the problem to optimality is thus only possible in very restricted cases.
The aim of this paper is therefore to study the T'SK P under the aspect
of approximability. We s}}ow that, unless P = NP, the TSKP cannot be
approximated within K~27¢ in polynomial time, where K is the number
of scenarios and € > 0. This is remarkable insofar, as the deterministic
knapsack problem admits a very simple %—approximation algorithm as well
as a Fully Polynomial Time Approximation Scheme (F'PTAS). To obtain
this non-approximability result we first show a key property of the T'SK P:
The solution to any instance of the T'SK P can be obtained by solving an
instance of a two-stage knapsack problem where, in the second stage, items
can only be added (here called AddT'SK P). The inverse is also true. This
leads us to showing the mentioned key result for the TS K P by reducing the
well studied multiply-constrained knapsack problem with uniform capacities
to the AddTSKP.

We also show that the deterministic reformulation of the AddT'SKP is in
turn a multiply-constrained knapsack problem. Note however that, even if
we assume the number of second-stage scenarios to be a constant, the deter-
ministic reformulation of the AddT'SK P has a number of constraints that is
linear in the number of items and can thus not be assumed to be a constant.
To the best of our knowledge, applying any so far published approxima-
tion algorithm for the multiply-constrained knapsack problem (or its basic
idea) directly to the AddTSK P does not yield a polynomial time algorithm
for exactly this reason. Instead, we propose an approximation algorithm



with approximation ratio 3 — € (e € (0, 3)) where one has to approximately

solve both a multiply-constrained knapsack problem and K (normal) knap-
sack problems. Moreover, we prove simple approximation algorithms for
two more special cases of the T'SK P (namely linearly dependent first- and
second-stage rewards and the polynomial scenario model).

In the last decade, several papers have been published that treat the ques-
tion of approximability of combinatorial two-stage problems. Some of these
results are positive in the sense that the stochastic version of the problem is
not much harder to solve than its deterministic counterpart ([12],[13]). For
other problems, the introduction of stochasticity increases the problem’s
complexity significantly (see [I4], [I5],[16],[I7]) which can be due to one of
the two following circumstances: In some cases the fact that we have at least
two different possible second-stage scenarios is the reason for the increased
complexity of the two-stage problem. In these cases the problem reduces to
the deterministic counterpart in case the number of second-stage scenarios
is 1. The T'SKP clearly falls in this category of problems. In other cases
the combinatorial structure of the problem changes completely when intro-
ducing a second stage. These problems can be characterized by the property
that even in the case of only one possible second-stage scenario the problem
stays harder to solve or approximate than its deterministic counterpart. For
more information on approximation of two-stage optimization problems see
the surveys by Swamy and Shmoys [I8], Stougie and van der Vlerk [19] or
Immorlica et al. [20].

The T'SK P has, for instance, not been studied under the aspect of approx-
imability. Moreover, to the best of our knowledge, we present in this paper
the first non-approximability result for a stochastic knapsack problem of any
kind.

Dean et al. [21] studied a stochastic knapsack problem where the weight of
an item is not known until the item is placed in the knapsack. The authors
do not make any assumption about the underlying probability distribution
of the random parameters. The aim of their work is "to design a solution
policy for sequentially inserting items until the capacity is eventually ex-
ceeded”. They compare non-adaptive with adaptive policies (where in the
latter case the choice of which item to insert next is made with respect to the
already added items). The authors propose constant-factor approximation
algorithms for both the adaptive and non-adaptive case. Their results have
been recently improved (see [8]). Moreover, a new but much related problem
has been studied where the knapsacks capacity is allowed to be extended by
an arbitrary small amount. While in [21] and [§] items, once they have been
inserted cannot be prematurely canceled any more, this is explicitly allowed



in the work of Gupta et al. [22]. Moreover, the authors allow the item
weights to depend on the item sizes, which, as well, generalizes the earlier
work. Their main result is that despite these generalization the problem can
still be solved up to a constant approximation factor in polynomial time.
The main difference between the stochastic knapsack problem studied in
[21], [8] and [22] and the T'SK P is that in the former we seek for an order-
ing of the items or a policy by which to add the items into the knapsack,
while in the latter a feasible solution is a (generally proper) subset of items.
The way these problems are addressed are thus quite different. Nonetheless,
the authors of [22] develop an interesting idea that might also be of use for
designing approximation algorithms for the T'SK P and will thus be briefly
sketched in the conclusion of this paper.

Kleinberg et al. [23] considered a stochastic knapsack problem where the
items are independent Bernoulli trials. The studied model is a chance-
constrained optimization problem and the authors present an approximation
algorithm whose approximation ratio depends logarithmically on the allowed
probability of overflow. The paper also contains an approximation algorithm
that finds a (better) near optimal solution for the case where the knapsack
capacity is allowed to be perturbed by a small constant €. Goel and Indyk
[24] extended this work by proposing a Polynomial Time Approximation
Scheme (PTAS)H for the chance-constrained knapsack problem where the
item weights follow a Poisson or Exponential distribution as well as a Quasi-
Polynomial Time Approximation Scheme for the case of Bernoulli trials. The
first ones to present approximation results for the chance-constrained knap-
sack problem with arbitrary weight distributions are Bhalgat et al. in [§]:
They show the existence of a PT AS for the chance-constrained knapsack
problem when both the knapsack capacity and the overflow probability are
relaxed by a factor (1 + €).

Both the type of stochastic knapsack problems studied e.g. in [21] and the
chance-constrained knapsack problem differ from the T'SK P considered in
this paper by the fact that in the TSK P every item has two different re-
wards: The first- and the second-stage reward. This makes it difficult to
apply the main idea of most approximation algorithms for deterministic or
stochastic knapsack problems to the T'SK P: Sort the items by their ratio of
reward and weight (or a similar value) and then insert them following this

n short, a PTAS for a maximization problem is a scheme that, for any fixed ¢ > 0,
allows to compute in polynomial time a solution with solution value at least (1 — €) times
the optimal solution value.



order. For instance, the authors of [2I] use an ordering of the items by the
ratio of reward and mean size.

The remainder of this paper is organized as follows: In section [2] we give the
mathematical formulation of the Two-Stage Knapsack problem considered.
In subsection [2.1] one of the examples for an application briefly sketched in
this introduction is specified and in subsection [2.2] some properties of the
TSKP are discussed. Among others we introduce the abovementioned spe-
cial variant of the T'S K P where items can only be added in the second stage
(AddTSK P). We show that for any instance of the AddT'SK P there exists
an equivalent instance of the TSK P. In section [3| we present the multiply-
constrained knapsack problem with uniform capacities and show that it is
equivalent to the AddT'SK P in the sense that any instance of the former
can be solved via an instance of the latter and vice versa. Section [ contains
the abovementioned non-approximability result, followed by a study of the
special variant of the T'SK P where items can only be rejected in the sec-
ond stage. The approximation algorithms under particular assumptions are
given in section 5} In the last section before the conclusion (section @ the
special case of independently discretely distributed weights is discussed.

2. Mathematical Formulation

We consider a stochastic knapsack problem of the following form: Let
a knapsack with fixed weight capacity ¢ > 0 as well as a set of n items
be given. Each item has a weight that is not known in the first stage
but comes to be known before the second-stage decision has to be made.
Therefore, we handle the weights as random variables and assume that the
random weight vector x is discretely distributed with K possible outcomes
x%, ..., x®. We denote the respective non-zero probabilities of these K sce-
narios by p',...,p". All weights are assumed to be strictly positive.
In the first stage, items can be placed in the knapsack (first-stage items).
The corresponding first-stage decision vector is denoted x € {0,1}". Placing
item 4 in the knapsack in the first stage results in a reward r; > 0. At the
beginning of the second stage, the weights of all items are revealed. First-
stage items can now be removed and additional items be added (second-stage
items) in order to make the capacity constraint be respected and/or increase
the total reward. Note that the set of items available in the second stage
is assumed to be a subset of those items that have already been available
in the first stage and that no first-stage item can be re-added in the second
stage.



In case of the removal of an item 4, a penalty d; has to be paid that is natu-
rally strictly greater than the first-stage reward r;. The removal of item i is
modeled by the decision variable y,” that is set to 1 if the item is removed
and to 0 otherwise. Similarly, we assume that the second-stage reward for
this item 7; > 0 is strictly smaller than its first-stage reward. If an item is
added in the second stage we set the corresponding binary decision variable
yi+ to 1. The resulting Two-Stage Knapsack problem with discrete weight
distributions can be mathematically formulated as follows:

Two-Stage Knapsack problem with discretely distributed weights

(TSKP) max Zn:pz —I—Zp Oz X

z€{0,1}"

st Oz, x) = - ymea{% l}anyZ z:d,yZ
s.t. y;rglfxi, Vi=1,...,n
y, <z, Vi=1,...,n
n
z(l‘z’ +y —y i<
=1

In this paper we present approximability and non-approximability results
for the TSKP and some special cases. We use the following definitions:
Let IT be an optimization problem and let Z be an instance of II. Given
an algorithm A for II, let A(Z) denote the objective function value of the
solution returned by A on instance Z. Also, let OPT(Z) denote the optimal
solution value for instance 7.

Definition 2.1. An approximation algorithm for an optimization problem
IT is a polynomial-time algorithm that solves mear-optimally every instance
of I. An approximation algorithm A of a mazimization problem II has an
approximation ratio of r(n) and is called r(n)-approximation algorithm if
the following condition holds for all instances T of I of input size n:

AZ)

opr) ="

Remark that for a maximization problem O“;(T() ) <1.



2.1. Example for an application of the Two-Stage Knapsack problem

As an application consider an (online) travel agency that aims to fill
the vacant beds (the deterministic capacity) of a hotel complex. Clients are
travel groups whose exact number of travelers (the ”weight” of the group) is
still unknown at the moment where the decision of which groups to accept
has to be made. This randomness can for example be a result of later
cancellations. If an upper bound on the sizes of the travel groups is known,
the probability space for the weights is discrete and finite. However, the
distributions of the group sizes might be dependent. In order to maximize
the final occupancy of the beds, the travel agent might allow an overbooking.
If, in the end, the number of beds is not sufficient, one or more of the groups
need to be relocated in neighboring hotels which leads to a loss of benefit.
If beds are left unoccupied, last minute offers at reduced prices might be an
option to fill these vacancies.
A simple recourse version of this problem with a set of hotel sites has been
previously considered in [25]. However, in this formulation it is assumed that
in the case of an insufficient number of beds single travelers can be relocated,
whereas in the two-stage formulation of the problem whole groups need to
be installed in other hotels.

2.2. Properties of the TSKP

Property 1:. The TSK P is an N'P-hard problem. This follows from the fact
that in case of only one scenario in the second-stage the problem reduces to
a deterministic knapsack problem (see also Property 3).

Property 2:. The TSKP is a relatively complete recourse problem, i.e., for
every feasible first-stage decision there exists a feasible second-stage decision.

Property 3:. Given a first-stage decision and a realization of x, solving the
second-stage problem means solving a deterministic knapsack problem: Let
S C {1,...,n} be the index set of the first-stage items, and S := {1,...,n}\
S. Let us define a new second-stage decision vector z € {0,1}": for i € S
z; = 1 indicates that item i is kept in the second stage and for j € S we set
zj = 1 if and only if item j is a second-stage item. Then, in scenario k the
second-stage problem consists in solving the following problem:

Tizj— ) di(l—2z
et I
j

i€S

n
s.t. Z zixf <ec.
i=1



Defining C':= — .. ¢ d;, the objective can be rewritten as

max Z d;z; + ZFJ-ZJ- +C
i€S ]Eg
We therefore obtain a knapsack problem with reward d; for the first-stage
items (if kept) and reward 7; for an added second-stage item.

Property 4:. The TSK P has a deterministic equivalent reformulation as a
combinatorial optimization problem with linear objective and constraints:
By introducing K copies of both the second-stage decision vector y and the
second-stage decision vector y~ (denoted (y*)¥ and (y~)*, k € {1,...,K},
respectively) and treating the second-stage constraints for each second-stage
scenario separately, one obtains the following reformulation:

Deterministic reformulation of the TSK P

n K n n
(TSKP) max Zrixi + Zpk <Zm(y+)f - Zdz(y_)f>
i=1 k=1 i=1 i=1
st. wHf<l-a;, Vi=1,...,nVk=1,... K,

(y ) <a, Vi=1,...nVk=1,.. K,
Y@+ @ - <e Vh=1,.. K,
=1

z € {0,1}",
Dk (y )k e {0,1}" Vk=1,...,K.

However, the TSKP has n(2K + 1) binary variables and (2n 4 1)K con-
straints. Especially if the weights are independently distributed and if we
assume K; possible outcomes for weight x;, we obtain a total number of
K =[[L, Ki > (minseqq, . n) K;)" scenarios, i.e., the number of scenarios is
(generally) exponential in the number of items. So solving the TSKP? using
common methods for linear programming might already be computationally
cumbersome for relatively small K; > 2.

Property 5:. Let AddT'SK P denote the variant of the T'S K P where, in the
second stage, items can only be added. The following proposition shows
that this problem is a special case of the general T'SK P:

Proposition 2.2. For any instance of the AddTSKP there ezists an in-
stance of the TSK P with identical optimal solution value and such that an



optimal solution of the T'SK P instance is optimal solution of the AddT SK P
instance, and vice versa.

Remark: Before proving the above proposition, let us remark that the
AddT'SKP is not a relatively complete recourse problem, as there exist
first-stage decisions that make the second-stage problem (in one or more
scenarios) infeasible. For these solutions we define the corresponding objec-
tive function value to be —oo. Such a solution is thus clearly not optimal as
there always exists a solution of an instance of the AddT'SK P with objective
function value greater or equal than 0.

The problem of second-stage infeasibility of the AddT'SK P could be ar-
ranged by adding K capacity constraints to the first stage.

Proof of Proposition[2.2 Let an instance of the AddT'SKP be given. We
construct a corresponding instance of the T'S K P as follows: The n-dimensional
parameter vectors r,7, x*, the probabilities p¥ and the capacity ¢ are car-
ried over to the new problem. For all ¢ = 1,...,n the penalty d; is set to
MaXpe(1,.. K} 7% + 1.

Let z* be an optimal solution of the obtained instance of the T'SK P and let
(y7)¥ = (y~)*(x) be a corresponding optimal second-stage solution for y~ in
scenario k. Assume that there exists k € {1,..., K} and i € {1,...,n} such
that (y~)F =1 (i.e., item 7 has been added in the first stage and rejected in

scenario k in the second stage). Then, item i contributes at most

~ ~ /r', T
ri — p*d; :ri—pk(mkaxp—;jtl) <ri—ri—pF <0

to the objective function value. We are thus able to strictly increase the
objective function value by setting x; = 0, a contradiction. It follows that
for any optimal (first-stage) solution of the constructed T'SK P instance all
corresponding optimal second-stage solutions are such that (y~)¥ = 0 for all
ke{l,...,K}and i € {1,...,n}. An optimal solution of the constructed
TSKP instance is therefore feasible for the corresponding AddT'SK P in-
stance, with identical objective function value. As any optimal solution of
the AddTSKP is, in turn, feasible for the T'SK P instance (with identical
objective function value), the proposition is proved. ]

Property 6:. In the TSKP the knapsack capacity is assumed to be deter-
ministic, i.e., identical in all scenarios. However, the formulation where the
capacities are, as well, scenario dependent (with a finite number of outcomes)
is in fact equivalent to the TSKP as we could simply multiply the capacity

10



constraint by an appropriate factor in each of the finitely many scenarios.
Note that the fact that all outcomes of the capacity are known and that
their number is finite is used here. In the case where the knapsack capacity
is bounded from above but has an infinite number of possible outcomes, an
equivalent reformulation with uniform (deterministic) capacity can still be
obtained by introducing an additional item and setting the uniform capacity
to a value strictly greater than the capacity’s upper bound. The random
weight of the additional item is defined as the difference between the newly
defined, deterministic capacity and the initial, random capacity. Its out-
comes are thus always strictly positive. The reward of the additional item
is defined in a way that any optimal first-stage solution must contain this
item.

3. Equivalence of the AddTSKP and the MCKP

The multiply-constrained knapsack problem MCKP (sometimes also
called multi-dimensional (vector) knapsack problem) with uniform capaci-
ties is generally defined as:

Multiply-Constrained Knapsack problem

n

(MCKP) max TiTi
ze{0,1}7 =1
ﬁ .
s.t. rw! <¢ Vji=1,...,m,
=1

where Qﬂg >0and¢,r; >0forallie{l,...,n}, je{l,...,m}.

3.1. Formulation of the AddTSKP as an MCKP

The AddTSK?P (i.e., the deterministic equivalent formulation of the
AddT SK P) can be stated as follows:

(AddTSKP) max Z rix; + Zp Z T yl (1la)

z€{0,1}"

s.t. (yl ) + x; S 1 Vz =1,.,n,k=1,..,K, (1b)

n

> @i+ NG <e

=1
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Problem is clearly a multiply-constrained knapsack problem (with non-
uniform capacities) with strictly positive rewards and capacities and non-
negative weights. Multiplying constraints by ¢ > 0 would turn it in an
MCKP.

Note that the number of constraints in this reformulation of the AddT SK P
depends on n and can thus not be assumed constant. It is therefore not
possible to (directly) apply the PT'AS for the MCK P (see e.g. [26]) to this
reformulation as its running time depends exponentially on n. In section
5.3| we however propose an approximation algorithm with ratio % — € and
running time polynomial in n.

3.2. Solving an instance of the MCK P via an instance of the AddTSKP

If we do not allow the rewards to be zero or negative, it is in general not
possible to equivalently reformulate the MCK P as an AddT'SKP. Never-
theless, it is possible to obtain an optimal solution for an instance of the
MCK P by solving an instance of the AddT'SK P. This is the subject of the

next proposition:

Proposition 3.1. Let an instance of the MCKP be given. Then, there
exists an instance of the AddT'SK P such that any optimal (first-stage) so-
lution of the latter is an optimal solution to the former.

Proof. W.l.o.g. we assume the reward vector r of the given instance of
the MCKP to be integer and construct a corresponding instance of the
AddTSKP as follows:

The knapsack capacity is ¢. The first-stage reward of item i is 7;. There are
m second-stage scenarios. The weight of item i in scenario j is set to w).
The probabilities of the scenarios are uniformly set to % and the second-
stage rewards are fixed at %—i—l where 7 is the number of available items for
the given instance of the MCK P.

Let z* be an optimal solution of the constructed instance of the AddT SK P.
Let v* be the corresponding solution value. It is easy to see that |v*] is
the reward provided by the items added in the first stage, as the first-stage
solution value is always integer and the contribution of adding items in the
second stage is at most

j:lmizl +1 n+1

3

which is strictly smaller than 1. Moreover, the vector z* is feasible for the
initial instance of the M CK P with objective function value [v*| as for the

12



AddTSK P any optimal first-stage solution is always second-stage feasible.
| v*] is thus a lower bound on the optimal solution value of the given M C K P
instance.

Let us assume that there exists a solution z* of the given M CK P instance
with objective function value v* > |v*]. As the optimal solution of the
MCK P instance is integer, we especially have v* > |v*]| +1 > v*. As z* is
of course feasible for the constructed instance of the AddTSK P, we have a
contradiction.

It follows that any optimal first-stage solution of the constructed AddT SK P
instance is optimal for the given M CK P instance. Moreover, the optimal
solution value of the latter is given by the integer part of the optimal solution
value of the former. O

4. Non-approximability results for the TSK P and some special
cases

In [27] the authors prove that, for all € > 0, the multiply-constrained
knapsack problem with non-uniform capacities does not admit a moite
approximation algorithm (where m is the number of constraints) unless P =
NP. The authors prove this by a reduction from the maximum clique
problem that can be formulated as a multiply-constrained knapsack problem
with capacity 1 in each constraint. Their proof is thus directly applicable to
the MCKP as well. In their paper the authors use that, for any € > 0, the
maximum c}ique problem cannot be approximated in polynomial time within
a factor n~2%¢ (where n is the number of vertices in the considered graph).
A newer result however states that it is even N'P-hard to approximate the
maximum clique problem within a factor n=1%¢ (see [28]). It follows, that the
multiply—constrailned knapsack problem with non-uniform capacities does
not admit a m~ 2t -approximation algorithm, for any ¢ > 0 (unless P =
NP).

Based on this, we can now show the following:
Theorem 4.1. For any € > 0, there exists no K3t
rithm for the TSK P, unless P = NP.

-approximation algo-

Proof. Due to the N'P-hardness of the TSK P the statement is obvious for
e > 1. Solet e € (0,3) be given. Assume that P # NP and that there
exists an algorithm A such that A finds, in polynomiall time, a solution to
any instance of the TSK P with worst case ratio K~ 27¢ (where K is the

number of scenarios in the given T'SK P instance).
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Let an instance of the MCK P be given. Like in the proof of Proposition
B.1] we assumelthe rewards to be int}eger. Then, we multiply the objective
function by m2 ¢ such that the m~2"*-fraction of any optimal solution of
the given M C' K P instance becomes integer.

As shown in subsection |3| we can find an optimal solution and the solu-
tion value of this MCK P instance by solving a corresponding instance of
the AddTSKP. Note that the number m of constraints of the MCKP
equals the number of second-stage scenarios in the obtained instance of the
AddTSKP. The AddT'SKP can in turn be equivalently reformulated as an
instance of the TSKP. Applying algorithm A to the latter gives us there-
fore an approximate Solutlion of the constructed instance of the AddT SK P
with worst case ratio m™21¢.

Let v be the obtained solution value and v* the optimal solution value of
the AddTSKP, i.e., we have Z—f > m~3+€. Recall that by the construction
in the proof of Proposition [3.I] the integer part of the optimal solution value
of the AddT SK P gives us the optimal solution value of the initial M CK P.
It follows that m™27¢|v*] is integer. We have:

|[vA] + (v* mod Z) = v*

> m et ([v*] + (v* mod Z))

— lm 2 0"+ m 2t (0" mod Z)

= o] = m 2 o)
Solving the T'S K P by algorithm A thus gives us a solution of the construc?ed
instance of the AddT'S K P whose objective function value is at least a m™21¢
fraction of the optimal solution value of the initial M C K P instance. As all
problem reformulations can be made in a number of steps polynomial in
the input size of the given M CK P instance, we get a contradiction to the

fact that the M CK P cannot be approximated within a factor m~37€ unless
P # N'P. This terminates the proof. O

From the proof of the previous theorem we immediately get the following
corollary:

Corollary 4.2. For all € > 0, there exists no K_%"’E-approximation algo-
rithm for the AddTSK P, unless P = NP.

As the TSKP defined in this chapter is a special case of the Two-Stage
Knapsack problem with scenario dependent capacities, we also have:
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Corollary 4.3. For any € > 0, there exists no K_%+E-approximati0n algo-
rithm for the Two-Stage Knapsack problem with scenario dependent capac-
1ties.

4.1. The special case where items can only be rejected in the second stage

Let RejTSKP be the variant of the TSKP where, in the second stage,
items can only be rejected. Similar to the case of the AddTSKP (see sub-
section it can be shown that any instance of the RejTSKP can be solved
via a corresponding instance of the M CK P and vice versa.

Proposition 4.4. Any instance of the RejTSKP can be equivalently refor-
mulated as an instance of the MCKP.

Proof. Let an instance of the RejTSKP be given. First of all we redefine
the first and second-stage decision variables:

e First-stage decision vector z: x; = 1 if and only if item ¢ is not added
in the first stage

e Second-stage decision vector (7)*: (y)¥ = 1 if and only if item ¢ has
been added in the first stage and is kept in the second stage in scenario
k (i.e., if and only if item ¢ is in the knapsack after the second-stage
choice has been made)

There are three possible cases for an item ¢ in scenario k:

e [tem ¢ is added in the first and kept in the second stage, i.e., ; =0
and (7)¥ = 1. In this case item 4 contributes r; to the total reward.

e Item i is added in the first and rejected in the second stage, i.e., T; =
(9)¥ = 0. In this case item i contributes —(d; — r;) to the total reward
(in scenario k).

e Item i is not added in the first stage, i.e., z; = 1 and (y)¥ = 0. In
this case item 7 does not contribute at all to the total reward (in any
scenario).

Remark that z; = (7)¥ = 1 is not possible.

Based on these observations, the RejTSK P instance can be reformulated
as follows:
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K n n
max Zpk (Z r@f — Z(dz —r)(1—7; — ﬂf)) (2a)
k=1 i=1

i=1
n
s.t. Zﬂfxfgc Vk=1,...,K,
i=1

L4+ <1 Vi=1,....n,Vk=1,...,K, (2b)
z €{0,1}",
7* e {0,1}" Vk=1,...,K.
After removing the constant term in the objective function and multi-
plying the n - K constraints by ¢, we obtain the following multiply-

constrained knapsack problem with nonnegative weights, strictly positive
rewards and uniform, strictly positive capacities:

K n n
max Zpk (Z ngzk + Z(dz — i) (Ti + gf))
k=1 =1 =1

n
s.t. Zﬂfxfgc, Vk=1,...,K,
i=1

i+t <e, Yi=1,...,n,Vk=1,... K,
z € {0,1}",
gF e {0,1}" Vk=1,..., K.

O]

Contrary to the AddTSKP the RejTSKP is even equivalent to the
MCKP as any instance of the MCK P can, as well, be equivalently refor-
mulated an instance of the RejT'SKP: It is sufficient to set the second-stage
penalties high enough, i.e., such that rejecting an item in the second stage
is never optimal:

Proposition 4.5. Any instance of the MCKP can be equivalently refor-
mulated an instance of the RejTSKP.

Proof. Let an instance of the M CK P be given. We construct an equivalent
instance of the RejTSKP having the following parameters:

° pk:%forallk:zl,...,m
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o r;:=r;foralli=1,...,n

° di-“ =m-r;+1foralli=1....nand k=1,...,m
e wFi=wkforalli=1,...,nand k=1,...,m
e c=¢C

Clearly, any solution of the initial M CK P instance is feasible first-stage
solution for the constructed RejT'SK?P instance with identical (overall) ob-
jective function value (as no item needs to be rejected in any scenario). In
turn, any first-stage solution of the RejT'SKP instance satisfies the con-
straints of the MCKP if no item needs to be rejected in any of the K
second-stage scenarios. The objective function values are once more the
same. It thus remains to prove the following claim:

Claim 4.6. Let (z7,...,2%) be an optimal first-stage solution of the con-
structed RejTSKP instance and let (y')*, ..., (y™)* be a corresponding op-
timal second-stage solution. Then (y*)f = 0 for alli = 1,...,n and k =
1,...,m.

Proof of the claim. Let v* be the optimal solution value of the constructed
RejTSKP instance. Suppose there exists i € {1,...,n} and at least one
scenario h with (y")7 = 1. In this case item i contributes at most r; — = (m-
ri+1) = —% to the total expected reward. Therefore, by not adding item ¢
in the first stage we obtain a solution with objective function value at least

v* + %, a contradiction. O
O]

As a direct corollary of proposition [£.5)as well as the non-approximability
of the MCK P we obtain:

Corollary 4.7. For all € > 0, there exists no K_%+€—approximati0n algo-
rithm for the RejTSKP | unless P = N'P.

Remark: Before finishing this section on the non-approximability of the
TSKP, we would like to remark the following:

(i) As long as we require the second-stage rewards to be strictly positive,
the RejTSKP is not a special case of the TSKP?: In general, we cannot
reformulate an instance of the RejTSKP as an instance of the TSKP? with
the same solution value, as this is the case for the AddT'SKP. However,
by combining the results of this subsection with those of the previous sub-
sections (or by proving it with a proof similar to that of Proposition
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one can show that the optimal solution of an instance of RejTSKP can be
obtained by solving a corresponding instance of T'SKP.

(ii) Nevertheless, the proof of Theorem can be rewritten in the follow-
ing way: Any instance of the MCKP can be equivalently reformulated
as an instance of the RejTSKP. In turn, the solution of an instance of
the RejTSKP can be obtained by solving a corresponding instance of the
TSKP.

5. Special-case approximation algorithms

5.1. The TSKP with reward dependent second-stage rewards or penalties

Proposition 5.1. Let o € (0,1) and denote TSK P(«) the variant of the
TSKP where7; = «-r; for alli € {1,...,n}. Then there exists an approx-
imation algorithm for the TSK P(«) with approzimation ratio c.

Proof. Let aninstance Z = (c,r,7,d, X", ..., x*,p', ..., p%) of the TSK P()
be given. We show that adding no item in the first-stage yields a solution
with overall solution value at least o - OPT(Z).

Let 7, (k € {1,...,K}) denote the instance of the deterministic knapsack
problem having 7 as reward vector, ¢ as capacity and y* as weight vector.
Let ¥ be an optimal solution of Z;. Then adding no items in the first stage
gives a solution for Z with overall solution value

K n

n K n K n
ZO “Ti Zpk Zﬁyf = Zpkza Tyl = azpkzriyf
i=1 k k=1 i=1 k=1 i=1

=1 =1

Zle pr > myF is the optimal solution value of a two-stage knapsack
problem with capacity ¢, weight vectors (x', ..., x), probabilities (p', ..., p"),
reward vector r and second-stage reward vector 7 = r (the penalty vector can
be arbitrary aslong as d; > r; foralli = 1,...,n). Zszl Pr Yoy riy¥ is thus
clearly an upper bound on the optimal solution value of any T'S K P instance
with capacity ¢, weight vectors (x!,...,x"), probabilities (p',...,p") and
first-stage reward vector r. This terminates the proof. O

From the proof of Proposition [5.1] we immediately get:

Corollary 5.2. For an instance of the TSKP define o := min;—1.__, %
Then adding no items in the first stage always yields a solution whose solu-

tion value is at least an a-fraction of the optimal solution value.
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Remark that in case where the first- and second-stage rewards are iden-
tical, adding no items in the first stage is even an optimal solution.
The case where we only require the second-stage penalties to depend linearly
on the first-stage rewards is more complicated. If we assume the second-
stage penalties to be equal to the first-stage rewards (i.e., if removing an
item does not cost us anything), then an optimal solution would be to add
all items in the first-stage. The optimal solution value would be the same as
in the case of a T'SK P instance where first- and second-stage rewards are
identical, i.e., Zszl pr Yy miyF (where y* is the optimal solution vector of
the deterministic knapsack problem with same capacity, reward vector r and
weight vector as in scenario k of the initial T'SK P instance). Due to this
observation one might thus think that in case of small enough second-stage
penalties this same algorithm would yield a solution with solution value close
to the optimum. This is of course true. However, we have the following:

Proposition 5.3. For any 8 > 1 there exists an instance of the TSKP
with d; = B -r; for alli = 1,...,n such that adding all items in the first
stage yields a negative solution value. This is still true if one assumes that
in each scenario at least one item fits the capacity.

Proof. Let > 1 be given. Choose n and a reward vector r such that

Tmaa:
<m-1)B-1)
T'min
where 1,0, = max;—1,. 7 and 7y, = ming—; ., 7. Assume w.lo.g. that
arg max;—1i,. 7 = n. We have

Tmazx Tmazx
p—1> > ==
(TL - 1)Tmin Z?:ll T

= B> Miin—ﬁ(im—rmad <0
=1 i=1

n .
Zi:l Ty — T"max

It follows that adding all items in the first-stage would yield a negative
solution value in case all but one item have to be removed in each scenario.
O

We thus cannot obtain a result of the form ”if d; = g - r; for all ¢+ =
1,...,n, then adding all items in the first stage yields a y-approximation
algorithm” (with, of course, v > 0).
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5.2. The TSKP under the assumption of a polynomial scenario model

Here is a simple approximation algorithm with approximation ratio %
(denoted by A}m): For all i = 1,...,n let R; denote the maximum ex-
pected reward we can obtain for item 4 within any solution. If x¥ < ¢ for all
k=1,..., K, this is certainly r;.

Let K; = {k € {1,...,K} : x¥ < ¢c}. It follows that R; = max{r; —
Zkglci phd;, Zkelci kT ). Let j = arg maxj—1,.n, Ri. fR; = Tj_Zkglcj pkdj,
set z; = 1 and x; = 0 for all ¢ # j, otherwise set z; =0 for all i =1,...,n.
This clearly yields a solution with approximation ratio % However, in order

to determine j in polynomial time, K needs to be polynomial in n. We get:

Proposition 5.4. Under the assumption of a polynomial scenario model,
algorithm AL s a %-approximation algorithm for the TSKP.

apx

Note that % > \/% if and only if n? < K. This means that if n? < K

(but K polynomial in n) there exists a K _%+€—appr0ximation algorithm for
some € > 0. This is, however, what one might expect as due to the reduc-
tion from the maximum clique problem, the non-approximability result of
Theorem only applies ”directly” to instances with n? > K (as in a graph
the number of edges is smaller than the square of the number of vertices).

5.3. The AddTSK P where the number of scenarios is assumed to be a con-
stant

Let K-AddTSKP (K-MCKP) denote the variant of the AddT'SK P
(MCKP) where the number of scenarios (constraints) is fixed to be K.
An algorithm with approximation ratio depending on K is the following
(denoted algorithm A2,.): First solve the following multiply-constrained
knapsack problem using the ﬁ—approximation algorithm proposed e.g. in
[26] for the K-MCK P. Denote Z the obtained solution and R’ the obtained

solution value:

n
max Z T (3)
i=1

z€{0,1}"

n
s.t. inxfgc Vk=1,...,K.
i=1

Then, for all £k = 1,..., K, solve the following knapsack problem with the
2-approximation algorithm for deterministic knapsack problems and denote
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(y)* the obtained solution:

n
max Z Ty (4)

yte{0,1}"

s.t. Zyl Xz <

For all k = 1,...,K define R¥ = 3" 7 (y")¥ and R” = S p*RF. If
R’ > R”, output . Otherwise output 0.

Proposition 5.5. Algorithm .Aapl, 15 a FRFT) +1) -approximation algorithm for
the K-AddT SK P that runs in linear time.

Proof. The linear time requirement follows from the running time of the 1

approximation algorithm for knapsack problems and the —approx1mat10n

algorithm for K-MCK P that both run in O(n) time.

First note that the overall solution value of the solution produced by Algo-

rithm A2, is at least max(R/ R"). Then, to prove that our algorithm has
(K+1)’ let an instance of the K-AddTSKP be

given and fix an optimal (first-stage) solution z*. Define

n
opt’ = g riT;
=0

i.e., opt’ is the reward due to the the first-stage items. As x* is feasible for
problem (3)), it follows R’ > opt’.
Let opt” be the expected second-stage reward for the fixed solution, i.e.,

: Zp Znyl
k=0 =0

Let furthermore opt® denote the total reward of the items added in scenario
k and opt the optimal overall solution value. It follows

an approximation ratio of

opt = opt’ + opt” < 2 - max(opt’, opt”)

K K

—9. rnax(opt/, Zpkoptk) < 2-max((K + 1)R’, QZPkRk)
k=1 k=1

< 2(K + 1) max(R', R")

which finishes the proof. O
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Theorem 5.6. For all € € (0, %), there exists an approximation algorithm
for the K-TSK P with approximation-ratio % — € and running time polyno-
mial i n.

Proof. Let € and an instance of the the K-T'SK P be given. Define ¢ := 2e.
The algorithm works as follows: First solve the K-MCK P by a PTAS
(see e.g. [1]) with accuracy 1 — €¢/. Denote the obtained solution value by
R'. Then, solve the K knapsack problems in using an FFPTAS with
accuracy 1 — €. Denote R*, k=1,..., K, the obtained solution values and
define R" := Zle p"RF. If R > R”, output the approximate solution of
the K-MCKP . Otherwise output the zero vector.

Similar as in the proof of Proposition [5.5| we get

2 1
opt < o max(R', R") = max(R', R") > (5 — €)opt
—€

The running time follows from the running time of the PT AS for the K-

MCKP proposed in [26] (that is O(n(?lﬁfK)) and the running time of the
FPTAS for the knapsack problem. O

Note that the running time of both algorithm Ac%pa: as well as the algo-
rithm proposed in the proof of Theorem [5.6] are only polynomial in n if K
is a constant. The reason is that both the mil—approximation algorithm as
well as the PT'AS for the K-MCK P proposed in [26] have running time
that depend exponentially on K.

Furthermore, note that the running time of the algorithm proposed in the
proof of Theorem depends exponentially on % due to the strong NP-
hardness of the K-MCKP.

The algorithms in this section were inspired by the %—approximation al-
gorithm for the Two-Stage Matching problem proposed in [16]. However,
there is an important difference between this stochastic matching problem
variant and the T'S K P studied in this paper: While in the former the uncer-
tainties occur in the objective function, they occur in the constraint in the
latter. This prevents us from obtaining a better approximation ratio than
m (or 3 — €) by following the ideas of the algorithm proposed in [29]
for the Two-Stage Matching problem: The authors show how by making a
slight modification in the algorithm proposed in [16] the approximation ratio
can be improved from % to % However, this idea does not extend to the
TSKP as the solution that is constructed during the modified algorithm

might be infeasible in the presence of uncertainty in the constraints.
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6. The special case of independently, discretely distributed weights

In this section we assume that the item weights are independently dis-
tributed and that item ¢ has a number K; of possible outcomes. As already
pointed out, if K; > 2 (for all items ) the a total number K of scenarios is
consequently exponential in the number of items.

However, in this special case algorithm .A}lpx isa %—approximation algorithm
for the TSK P, as long as the K; are polynomial in the number of items n.

Proposition 6.1. Under the assumption that the number K; of outcomes

of xi is polynomial in n (for all i € {1,...,n}), algorithm AL, is a 1
approximation algorithm for the TSKP.
Proof. Let us denote as usual x',...,x" the K possible outcomes of the

weight vector x (where K = [[IL, K;) and X},..., XZKZ the K; possible out-
comes of the random variable x;. Instead of computing K; as K; = {k €
{1,..., K} : x¥ <c},it can be computed as K; = {k € {1,..., K;} : x¥ < c}.
Computing K; or a sum over the elements of IC; for all ¢ can thus been done
in polynomial time. This makes A}m a %—approximation algorithm in the
case of independently distributed weights with polynomial number of out-
comes. O

7. Conclusion

In this paper we studied the Two-Stage Knapsack problem with random
weights (T'SK P) under the aspect of approximability. The studied model
allows both removal and adding of items in the second stage, and items can
even be exchanged in favor of more reward effective items. We assumed the
item weights to be discretely distributed, which allows the reformulation
of the problem as a linear combinatorial optimization problem. However,
solving the problem exactly is only tractable for a rather small number of
second-stage scenarios. )
We showed that the problem cannot be approximated within a factor K ~21¢,
unless P = NP (where K is the number of second-stage scenarios and € > 0).
However, we achieved simple approximation algorithms for the special cases
of linearly dependent first- and second-stage rewards, the polynomial sce-
nario model and a fixed number of scenarios.

The key to the results presented in this paper is a reduction of the well
studied multiply-constrained knapsack problem to the T'SK P. While it is
easy to see that the deterministic reformulation of the T'SK P is a multiply-
constrained knapsack problem where some item rewards are negative, the
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fact that any instance of the multiply-constrained knapsack problem can be
solved via an instance of the T'SK P is not that obvious.

Future work might first of all consist in studying further variants and special
cases of the T'SK P that might allow for better approximation ratios such as
the variant where item rewards are a fix multiple of the item weights (and
thus also random) or the variant with Bernoulli-distributed ”on-off” items
(see [24]).

The deterministic reformulation of the T'SK P has a very special structure
known in the literature as ”L-shaped”. This structure might be used in order
to get a tighter non-approximability result or better approximation ratios
for the special cases. However, we conjecture that it is hard to approximate
the variant of the T'SK P where the number of second-stage scenarios is as-
sumed to be a constant at a better approximation ratio than %

As mentioned in the introduction, the authors of [22] present a very inter-
esting idea that despite being applyied to a problem with a much differnt
structure might also give an idea for an approximation algorithm for the
TSKP. Similar to the basic idea of the Fully Polynomial Time Approx-
imation algorithm for the (deterministic) knapsack problem (i.e. to work
with ”truncated” weights), the authors of [22] propose to reduce the set of
possible weight distributions to a well defined set of ”canonical” weight dis-
tributions. Moreover, instead of dividing the items into large and small size
items as it is the basis of some famous approximative knapsack algorithms,
the authors classify in their algorithm the items by their probability to real-
ize to a small or large size item. The application of one or both paradigms
to the T'SK P or one of its special variants seems - to us - very much worth
looking into.
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