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1 Introduction and Mathematical Formulation

The knapsack problem is a widely studied combinatorial optimization prob-
lem. It consists in choosing among a set of items a subset such that the total
weight of the chosen items respects a given weight restriction (the capacity
of the knapsack) while the total reward of the chosen items is maximized.
The most common applications arise in fields where some capacity has to be
respected (storage, transport, packing, network optimization...) or where the
decision maker has to handle limited resources (recourse allocation, cutting
stock problems...). However, knapsack problems also serve as subproblems in
less obvious fields of application such as cryptography or finance.
As in many applications the decision maker has to face uncertainty in the
involved parameters, more and more studies are made on various settings of
the Stochastic Knapsack problem, where some of the parameters are assumed
to be random (i.e. not exactly known in the moment the (pre-)decision has to
be made). In this paper we restrict our study to the case where the weights
are assumed to be random. Moreover, we assume that the decision can be
made in two stages: A pre-decision is made while the item weights are still
unknown, i.e. the decision maker assigns some items to the knapsack without
knowing their exact weights. In this first stage we obtain a certain reward
for the added items. Then, once the weights of all items have come to be
known, we can make a corrective decision (second stage): If additional items
are added, the reward obtained for these items is smaller than it would have
been in the first stage. And if items are removed, a penalty has to be paid that
is naturally strictly greater than the received first-stage reward. The objec-
tive is to maximize the first-stage reward plus the expected second-stage gain,
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where the latter is composed of the reward obtained for added items minus
the penalty paid for removed ones. We call the resulting problem Two-Stage
Knapsack problem. Its mathematical formulation is as follows:

(TSKP ) max
x∈{0,1}n

n∑
i=1

rixi + E[Q(x, χ)] (1a)

s.t. Q(x, χ) = max
y+,y−∈{0,1}n

n∑
i=1

riy
+
i −

n∑
i=1

diy
−
i (1b)

s.t. y+i ≤ 1− xi, ∀ i = 1, . . . , n, (1c)

y−i ≤ xi, ∀ i = 1, . . . , n, (1d)
n∑
i=1

(xi + y+i − y−i )χi ≤ c. (1e)

where x is the first-stage decision vector and r > 0 the first-stage reward vec-
tor, both of dimension n. The weight of item i is represented by the random
variable χi. The second-stage binary decision vector y+ models the adding of
items while the decision vector y− models their removal. If item i is added
in the second stage we receive a second-stage reward ri < ri, and if it is re-
moved we have to pay a penalty di > ri. An item can only be added if it had
not been added in the first stage (constraint (1c)) and removed if it has been
added previously (constraint (1d)). In the end, the items (remaining) in the
knapsack need to respect the knapsack capacity c > 0 (constraint (1e)).
To the best of our knowledge there have only been two previous studies of
Two-Stage Knapsack problems: In [4] the authors study a Two-Stage Knap-
sack problem with probability constraint in the first stage where the item
weights are assumed to be normally distributed. The main difficulty in this
case arises from the question of how to evaluate the objective function ex-
actly. The authors therefore propose upper and lower bounds and apply a
branch-and-bound algorithm to search the first-stage solution space for the
best such lower bound. In [2] the authors study Static as well as Two-Stage
Quadratic Knapsack problems with chance-constraint. The authors assume
a finite distribution for the weight vector which allows them to reformulate
the studied problems in a deterministic equivalent form. The authors propose
semi-definite relaxations to obtain good upper bounds in reasonable time.
As in [2] we assume in this paper that the weight vector only admits a finite
number of outcomes (scenarios) with non-zero probabilities. This allows to re-
formulate the TSKP deterministically (see e.g. [2]). In fact, in [3] it has been
shown that a stochastic combinatorial optimization problem can, under some
mild assumptions, be approximated to any desired precision by replacing the
underlying distribution by a finite random sample. However, to obtain a good
approximation the used set of random samples needs generally to be rather
large. Moreover, if the weights are e.g. independently, discretely distributed,
the number of scenarios might grow exponentially with the number of items.
Solving the obtained deterministic equivalent problem to optimality is thus
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generally not tractable. That is why we are interested in the approximability
of the TSKP with discretely distributed weights. Note that, like its determin-
istic counterpart, the Two-Stage Knapsack problem is NP-hard. Moreover, it
has been shown in [1] that two-stage stochastic integer programming problems
with discretely distributed parameters are even ]P-hard.
In the second section we state a non-approximability result for the TSKP and
give a sketch of the proof. This is followed by three positive approximation
results.

2 (Non)-Approximation results

Theorem 2.1 For any ε > 0, there exists no polynomial-time K−
1
2
+ε - ap-

proximation algorithm for the TSKP , unless P = NP.

Sketch of the proof: The idea of the proof is as follows: Basically we do a
reduction from the multi-dimensional knapsack problem (MDKP ). In [5] the
authors prove that, for all ε > 0, the MDKP does not admit a polynomial-
time m−

1
4
+ε-approximation algorithm (where m is the number of constraints)

unless P = NP . This is proven by a reduction from the maximum clique prob-
lem. In their paper the authors use that the maximum clique problem cannot
be approximated within a factor n−

1
2
+ε, for any ε > 0, where n stands for the

number of vertices. A newer result however states that it is even NP-hard to
approximate the maximum clique problem within a factor n−1+ε.
Instead of giving a direct reduction from the MDKP to the TSKP , we first
show how the optimal solution value of the MDKP can be obtained by solv-
ing a special variant of the TSKP where items can only be added in the
second-stage (called AddTSKP ). Note that this is not done by an equivalent
reformulation: In fact, the reduction is such that the integer part of the solu-
tion value of the AddTSKP instance gives us the optimal solution value of the
initial MDKP instance. However, the optimal first-stage solution of the for-
mer is optimal solution for the latter. The number of scenarios in the obtained
AddTSKP instance equals the number of constraints of the MDKP . In the
second step we show that for any instance of the AddTSKP there exists an
instance of the TSKP with same number of scenarios, identical optimal solu-
tion value and such that an optimal solution of the TSKP instance is optimal
solution of the AddTSKP instance, and vice versa. The last step consists in
proving that these polynomial reductions preserve the non-approximability
result for the MDKP . �

Proposition 2.2 For an instance of the TSKP define α := mini=1...,n
ri
ri

.
Then adding no items in the first stage yields a solution whose solution value
is at least an α-fraction of the optimal solution value.

Idea of the proof: First of all note that α < 1. The idea is to first replace,
for all i, the second-stage reward ri by α ·ri. The optimal solution value of the
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new instance is thus a lower bound on the optimal solution value of the initial
instance. Then adding no item at all in the first stage yields a solution for the
obtained instance with approximation ratio at most α. This approximation
ratio is thus also valid for the initial instance.

Proposition 2.3 Under the assumption of a polynomial scenario model, there
exists a polynomial-time 1

n
-approximation algorithm for the TSKP .

Underlying algorithm: For all i = 1, . . . , n let Ri denote the maximum
expected reward we can obtain for item i. Let Ki = {k ∈ {1, . . . , K} : χki ≤ c}
where K is the number of scenarios and χki (k = 1, . . . , n) are the outcomes
of the random variable χi. Let pk > 0 be the probability of scenario k. It
follows that Ri = max{ri−

∑
k 6∈Ki

pkdi,
∑
k∈Ki

pkri}. Let j = arg maxi=1,...,nRi.
If Rj = rj −

∑
k 6∈Kj

pkdj, set xj = 1 and xi = 0 for all i 6= j, otherwise set
xi = 0 for all i = 1, . . . , n. This clearly yields a solution with approximation
ratio 1

n
. However, in order to determine j in polynomial time, K needs to be

polynomial in n.

Proposition 2.4 Let K-AddTSKP (K-MDKP ) denote the variant of the
AddTSKP (MDKP ) where the number of scenarios (constraints) is fixed to
be K. Then, for a given ε > 0, there exists a polynomial-time approximation
algorithm for the K-AddTSKP with approximation-ratio 1

2
− ε.

Idea of the underlying algorithm: First, solve the first-stage problem
as a K-MCKP (i.e. the solution has to respect the K second-stage capacity
constraints) using a PTAS. Then, solve independently the K second-stage
knapsack problems using the well known FTPAS and compute the expecta-
tion of the obtained solution values (based on the corresponding probabilities
of the scenarios). The associated solution is to add no item at all in the first
stage. Compare the two solutions and output the better.
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