Upper bounds for the 0-1 stochastic knapsack problem
and a B&B algorithm*

Stefanie Kosuch

January 29, 2010

Abstract

In this paper we study and solve two different variants of static knapsack problems
with random weights: The stochastic knapsack problem with simple recourse as well
as the stochastic knapsack problem with probabilistic constraint. Special interest is
given to the corresponding continuous problems and three different problem solving
methods are presented. The resolution of the continuous problems allows to provide
upper bounds in a branch-and-bound framework in order to solve the original problems.
Numerical results on a dataset from the literature as well as a set of randomly generated
instances are given.

1 Introduction

The knapsack problem has been widely studied for the last decades (Kellerer et al.| (2004),
Harvey M. Salkin| (2006)). The problem consists in choosing a subset of items that maxi-
mizes an objective function w.r.t. a given capacity constraint. More precisely, we assume
each item to have a benefit or benefit per weight unit as well as a specific weight or resource.
Then, our aim is to choose a subset of items in order to maximize the total benefit w.r.t.
a given capacity. There is a wide range of real life applications of the knapsack problem,
amongst all transportation, finance, e.g. the purchase of commodities or stocks with a lim-
ited budged or schedule planning, where different tasks with different priority or benefit
should be fulfilled in a limited time.

The knapsack problem is a combinatorial problem: each item is modeled by a binary deci-
sion variable z € {0,1} with 2 = 1 if the item is chosen and 0 otherwise.

The knapsack problem is generally linear, i.e. both the objective function and the con-
straints are linear. Nevertheless, it is known to be NP-hard (see (Kellerer et al.| [2004))).

In the deterministic case, all parameters (item weights, benefits and capacity) are known.
However, in real life problems it is not uncommon that not all of the values are prede-
termined. These values can be modeled by continuously or discretely distributed random
variables which turns the underlying problem into a stochastic optimization problem (for a

*Based on the article of the same title by S. Kosuch and A. Lisser accepted for publication in Annals of
Operations Research

survey on optimization under uncertainty see (Sahinidis| [2004)). As the deterministic prob-
lem, the stochastic knapsack problem is at least NP-hard (see (Kellerer et al., 2004))).

In this paper, the item weights are supposed to be independently normally distributed with
known mean and variance, whilst the capacity and benefits remain deterministic. Readers
interested in the case of random returns are referred to |Henig| (1990), (Carraway et al.| (1993))
as well as to [Morton and Wood| (1997). In the latter, the authors solve this variant of a
stochastic knapsack problem using dynamic and integer programming as well as a Monte
Carlo solution procedure. In all three publications, the authors solve so called stochastic
target achievement problems. This means that, instead of maximizing the expected reward,
the objective of the problem is to maximize the probability to attain a certain target.

We consider two models of stochastic knapsack problems with random weights. The first is
an unconstrained problem, namely the Stochastic Knapsack Problem with simple recourse,
while the second is a constrained stochastic knapsack problem.

There are very few publications dealing with the (exact or approximated) solution of one of
the problem types addressed in this paper.

A handful of publications dealing with the first formulation exists in the literature, see for
instance |Agraliand Geunes| (2008), |Claro and de Sousa (2008)), |Cohn and Barnhart| (1998)
or Kleywegt et al.| (2001)). In (Cohn and Barnhart, 1998)) and (Kleywegt et al., [2001)) the
authors also assume the weights to be normally distributed. In the latter, a Sample Average
Approximation (SAA) Method is used to solve the problem approximatively. Our work is
mainly inspired by the work of (Cohn and Barnhart, [1998)) who used a branch-and-bound
algorithm (hereafter called B&B algorithm) to solve the problem exactly. In
the authors assume the item weights to follow a Poisson distribution. Like
proceeded in this paper, they solve the continuous relaxation of their problem in order to
compute upper bounds for a B&B algorithm. The authors of (Claro and de Sousal [2008)
solve the Stochastic Knapsack Problem with simple recourse in a very different way. As the
problem can be seen as a multi-objective optimization problem, they solve i.a. Conditional
Value at Risk (CVaR) reformulations using an SAA method as well as tabu search related
techniques.

The second formulation of the stochastic knapsack problem addressed in this paper belongs
to the general chance constrained stochastic optimization problems especially studied by
Prekopal (1995) for continuous problems. In (Kleinberg et al., 1997) and (Goel and In-|
@ @ the authors present approximation algorithms for three different combinatorial
stochastic problems. One of these problems is a constrained stochastic knapsack problem
with random weights. While in the former the item weights are assumed to be arbitrarily
distributed which leads to an O(1) approximation algorithm, the authors of the latter assume
Poisson and exponentially distributed weights which allows them to prove the existence of
a polynomial approximation scheme.

In this paper, we give special regard to the solution of the relaxed, i.e. continuous versions
of the treated problems.

Two of these methods are stochastic gradient type algorithms. First papers on this iterative
stochastic approximation methods where released in the middle of the last century
bins and Monro| (1951)), |[Kieper and Wolfowitz (1952)). Since then, an extensive amount of
theoretical results on the convergence of the stochastic gradient algorithm and its variants
has been published (]Polyak| (]1990[), |L’Ecuyer and Yin| (]1998D). The method has found many
applications, particularly in machine learning and control theory. For a survey, see the books

by [Nevel’son and Has’minskii (1976) and by [Kushner and Yin/ (2003]).

The third problem solving method presented is based on the reformulation of the stochastic
problem as an equivalent deterministic problem, more precisely as a Second Order Cone
Programming problem (see (Boyd et al.| |1998))). This special type of convex optimization
problem is most efficiently solved using interior point methods (Boyd and Vandenberghel
2004).

The results obtained by studying the relaxed problem are afterwards used to provide up-
per bounds in a B&B algorithm. The B&B algorithm is one of the most common ways to
solve deterministic knapsack problems. One of the first papers in which the author solved
the knapsack problem using a B&B algorithm was (Kolesar, [1967). In (Martello and Toth,
the authors present a method to calculate upper bounds for the 0 — 1 knapsack prob-
lem and use them within a B&B algorithm. Recent work has been published in
where the authors present a B&B algorithm for the more general polynomial knapsack
problem. In|Carraway et al. (1993), the authors solve a variant of the stochastic knapsack
problem using a B&B algorithm.

The problems studied in this paper are static, i.e. the decision which items to choose is
made before the stochastic parameters come to be known. The majority of the papers on
the stochastic knapsack problem studies the dynamic or ”on-line” variant of the problem.
In the case of the dynamic stochastic knapsack problem, the items (e.g. their reward and/or
measures) are supposed to come to be known during the decision process either directly
before or after an item has been chosen. Further decisions are therefore based on the weight
parameters already revealed and the decision previously made. The problem consists there-
for mostly in creating an optimal decision policy. For further reading see (Lin et al., [2008)),
(Babaioff et al.l [2007), (Kleywegt and Papastavrou, [2001)), (Marchetti-Spaccamela and Ver-|
cellis}, [1995)) or (Ross and Tsang] [1989).

Another important field of research concerning the stochastic knapsack problem are ap-
prozimation algorithms as proposed by [Kleinberg et al| (1997), |Goel and Indyk (1999) or
[Klopfenstein and Nace| (2006). In the latter, the authors use robust and dynamic program-
ming to find feasible solutions for the chance constrained knapsack problem with random
weights. In (Dean et al.,[2004) the focus lies on the comparison of adaptive and non-adaptive
policies for a stochastic knapsack problem where the size of each item is random but is re-
vealed when the item is chosen. In a recent paper by , the author develops an
approximation scheme in a rather uncommon way using differential equations and fluid and
diffusion approximation approaches.

The remainder of this paper is organized as follows: In section [2] the mathematical formu-
lations of the stochastic knapsack problems addressed in this paper are given. The different
solving methods for the corresponding relaxed problems as well as the B&B algorithm are
introduced in section Numerical results are presented and discussed in section [4] and
concluding remarks given in section

2 Mathematical formulations

We consider a stochastic knapsack problem of the following form: Given a set of n items.
Each item has a weight that is not known in advance, i.e. the decision of which items to
choose has to be made without the exact knowledge of their weights. Therefore, we handle

the weights as random variables and assume that weight y; of item i is independently
normally distributed with mean p; > 0 and standard deviation o;. Furthermore, each item
has a predetermined reward per weight unit r; > 0. The choice of a reward per weight unit
can be justified by the fact that the value of an item often depends on its weight which
we do not know in advance. We denote by x, i, o and r the corresponding n-dimensional
vectors. Our aim is to maximize the expected total reward E[Y " | r;x;2;]. Our knapsack
problem has a given weight capacity ¢ > 0 but due to the stochastic nature of the weights
the objective to respect this restriction can be interpreted in different ways. We consider two
variants of stochastic knapsack problems. The second variant is studied in two equivalent
formulations:

1. The Stochastic Knapsack Problem with simple recourse (SRK P)

n

g B roia) =Bl)~ 0

2. The Constrained Knapsack Problem (CKP)

a) The Chance Constrained Knapsack Problem (CCK P)

max IE i X %i 2
Jmax [; xiai) (2)
st Plglz,x) <c} >p (3)
a) The Expectation Constrained Knapsack Problem (ECK P)
E iXiTi 4
x| [;r xizi) (4)
st Ellg+(c—g(z, X)) = p (5)

where P{A} denotes the probability of an event A, IE[-] the expectation, 1g+ the indicator
function of the positive real interval, g(z,x) = > j Xi%i, (2] := max(0,2) = z - Ig+(z)
(z €R), de R" and p € (0.5,1] is the prescribed probability.

We call solution vector every x € R™ such that x = argmax,cx,, J(x,x) where J is the
objective function of one of the above maximization problems and X,q; € R"™ the feasible
set. We refer to the objective function maximum value of one of these problems as solution
value.

Throughout this paper, we denote by f and F' density and cumulative distribution function
of the standard normal distribution, respectively.

3 Problem solving methods

This section is subdivided into two subsections: In the first one we present three possibilities
the solve the relaxed stochastic knapsack problem, one for each formulation presented in
section [2l In the second subsection, we use these methods to calculate upper bounds for a
B&B algorithm in order to solve the corresponding combinatorial problems.

3.1 Calculating upper bounds
3.1.1 The stochastic knapsack problem with simple recourse

In this formulation, the capacity constraint has been included in the objective function by
using the penalty function [-]* and a penalty factor d > 0. This can be interpreted as
follows: in the case where our choice of items leads to a capacity excess, a penalty occurs
per overweight unit.

In order to simplify references to the included functions, we define

¢1($, X) =K

ZHXﬂi] and o(x,x) = [[g(x,x) - C]+]

=1

i.e. our objective function becomes J(x,x) = ¥1(x,x) — d - ¥a(x, x)-

We define a new random variable X := g(x, x) which is normally distributed with mean
fi == Y0 i, standard deviation & := /S o727, density function p(x) = L f(22)
and cumulative distribution function ®(z) = F(‘;“) Based on these definitions, we can

rewrite our objective function J in a deterministic way using the following;:

E[X - d] = [IX—d* e dx = [(X -0 e(x) X

=i 790()() dX +&° 7<p’(X) dX — 07¢(X) dx

4

o 1 -0 [1- R

This leads to the deterministic equivalent objective function

Jaet () :zi:”“ixi_d' {C}'f (C;ﬂ> —(c—p)- [1—F<C;ﬂ)” (6)

The fact, that SRK P admits a deterministic equivalent problem is important as we
would like to solve the combinatorial problem using a B&B algorithm. This requires constant
evaluations of the objective function.

As in the continuous case x; is defined on the interval [0, 1], SRK P becomes a concave
optimization problem. Due to this concavity and as the objective function handles the
capacity constraint, we can apply a stochastic gradient algorithm (see Algorithm .

A stochastic gradient algorithm is an algorithm that combines both Monte-Carlo tech-
niques and the gradient method often used in optimization theory. Here, the former is used
to approximate the gradient of the objective function that is a function in expectation. More
precisely, if the objective function is J(x,x) = E[j(z, x)], we use in step k + 1 the gradient
V.j(x®, x*) (where x* is a random sample of y) instead of V,J(z*, x).

Stochastic Gradient Algorithm

Choose z° in X,q = [0,1]"
At step k+1, draw a sample x* = (x¥, ..., x*) of x according to its normal distribution
Update z* as follows:

Lh L — gk ok

where ¥ = V_j(z%, x*) and (€*)zen is a o-sequence
For alli=1,...,n: If xf“ > 1 set zf“ =1 and if xf“ < 0 set xf“ =0

Algorithm 3.1:

In the case of SRKP, we have j(z,x) = Y., riXxi®i —d - [g(z,x) —]*. As j is not dif-
ferentiable, we approximate its gradient by using approximation by convolution (for further
details on this method see (Ermoliev et al. |1995) or (Andrieu et al., |2007))). The basic
idea of this method, which we simply call ”approximation by convolution (method)”, is to
approximate the indicator function 1g+ by its convolution with a function h:(z) := %h (%)
that approximates the Dirac function when the parameter ¢ goes to zero. The convolution
of two functions is defined as follows:

o0

(p*h)(z) = / p(y)h(z —) dy

— 00

o0
Using a pair, continuous and non-negative function h with [h(z) dz = 1 having its
—o0

maximum in 0, we get the following approximation of a locally integrable real valued function
p:

oo

(o) i= (@) = p<y>h<y‘r> dy

t

— 00

In the case of p = 1R+, we have:

100 Yy —x 1OO T —y
=—|h dy=- [h d
pi() t/(;) Y t/(;) y
0 0
and so

1 ¥ T —y 1 /x
/ = — h/ _— d - _7h(7>
)= [() a=ga(3
0
Based on this, we get an approximation V(j;), of the gradient of the function j which is

V@) = (10, mn) - (—1 - h(“’”‘) (o) o)

t
+1g+(g9(z,x) — ¢ 'x>

Various functions may be chosen for h. In (Andrieu et al., 2007) the authors study
different such choices. For each one of them, they compute a reference value for the mean
square error of the obtained approximated gradient. It turns out that, among the presented
functions, h = 2(1 — 2%)1;(z) is the best choice concerning this value (here 1 is the
indicator function for the interval | — 1, 1[). This leads us to the following estimation of the
gradient of j:

V(Jt)m(mv X) = (TIXIu ~"7ran)T
2
+d'<jt (1 - (g(x’if) -)) 1, (g(xﬁf) - C)-x-(g(x,x>—c>—nR+ (g(x,x>—c>~x>

3.1.2 The constrained knapsack problem

As presented in section [2] we consider two constrained knapsack problems, one with a chance
and one an expectation constraint. As

P{g(z,x) < c} = E[lg+(c — g(z,x))]

these two considered variants of the stochastic knapsack problem are in fact equivalent.
As in the case of SRK P, CK P has a deterministic equivalent formulation of the objective
funtion:

The chance constrained knapsack problem

Generally, the chance constraint does not define a convex set which makes the reso-
lution even of continuous chance constrained problems difficult.

It has been shown by [Prekopal (1995 that the set defined by constraint is convex if
has a log-concave density and g is quasi-convex. The first property can easily be proved for
normal distributions and as our function g is linear, it is also (quasi-)convex. This means
that the chance constraint defines a convex set in the special case of a chance constrained
knapsack problem with normally distributed weights.

We solve the continuous CCKP by reformulating it as an equivalent, deterministic
Second-order-cone-programming (SOCP) problem (Boyd et al. [1998). An SOCP prob-
lem is an optimization problem of the following form:

max vlz (7)
r€EXaq
st. |Az +b|| < Tz +d (8)

where A € R" x R", z,v,b,c € R" and d € R. In the following, we call a constraint of
the form an SOCP-constraint.

Let ¥ be the matrix of covariances of the probability vector x. As we assume p > 0.5,
we get the following equivalence (see e.g. (Boyd et al.l [1998]))

Plgle,) <o)} =p <= Y i + F (0|2 < e

K3

Notice that ¥ is a diagonal matrix as the weights are independently distributed. There-
fore, its square root Yz is also diagonal having the standard deviations of the random
variables y; as nonzero diagonal components.

Based on this, the relaxed chance constrained knapsack problem becomes

m E§ iXiTi max IEErx
J:E[Ozﬁi]" | ; it z€[0,1]" [p Xt
1
s.t. E piti 4 0|22z < ¢ s.t. [2422) < -5 E i —|—§

where § := F~1(p) > 0.
The constraint 0 < z; <1 (i = 1,...,n) of the corresponding relaxed problem can also
be rewritten as an SOCP constraint:

where A; € RY™™", A;[1,k] =0 Vk # i and A;[1,i] = 1.
Then, the SOCP problem becomes:

max v’z (9)

wERP
st =V < —% T (10)
|Asz|| < vz, (11)
[Aiz] <1, (12)
where v := (rip1,...,7pn) and v € R™ such that v’y = 1 if k = i and vl = 0

otherwise.

This problem does not have any strictly feasible solution vector, as constraint is
always tight. This becomes problematic if we want to solve this problem using the SOCP
program by Boyd, Lobo, Vandenberghe (Boyd et al.|(1995)) as it applies an interior point
method and can thus only solve strictly feasible problems. To get a strictly feasible solution,
we perform a small perturbation on the right hand side of by adding ¢ to v’z such that
0<e<<l

In order to solve problem @D— using the SOCP code by Boyd et al., we further
determine its dual and check whether it is strictly feasible:

n
. c
min — . w! — E w?
wl€R, o =1
w? w3,z 22 23 eR™ -
T n 1 n
1/2 1 T2, .3 1 i 2
s.t. (E/) z—i—g Ai(zi+zi)—g~u~w+g v'w; =
i=1 i=1
121 < w!
k k .
lzZ | <w?, k=2,3,i=1,...,n

where z! € R", 22,2} € R and w',w?, w}
variables.
To find a strictly feasible solution vector for the dual problem, we reformulate it as

follows:

€ R,: = 1,...,n, are the dual decision

: c 1 3
min ——w - w;
w'€ER, o ; !
w? w?, 21,22 23 eR™ =
s.t. ai-zil—sz—i-zf’—%-wl—kwf:riui,izl,...,n
|ZF | <wF, k=2,3,i=1,...,n
At this point, we first use the fact that the random weights are independently distributed.
If we choose z! = 2 =0 (k=1,2, i =1,...,n) and arbitrary w? > 0 (i = 1,...,n), it is
easy to find strictly feasible w!,w? (i =1,...,n).

The expectation constrained knapsack problem

Generally, expectation constrained knapsack problems can be formulated as follows:

s B o (2
s.t. E[B(z,x)] < « (14)

where a € R and © : R™ x R™ — R is a function such that represents the capacity
constraint.

If constraint is convex and O is differentiable, EFC' K P can be solved by a stochastic
Arrow-Hurwicz algorithm (see Algorithm . The stochastic Arrow Hurwicz algorithm is
a stochastic gradient algorithm for solving constrained stochastic optimization problems by
using Lagrangian multipliers.

Stochastic Arrow-Hurwicz Algorithm

1. Choose 2° € X% and \° € [0, 00) as well as two a-sequences (€*)rew and (p*)ren

2. Given z* and M*, we draw Y341 following its normal distribution, we calculate r* =

Vj(z?, k1), 08 = vO(zF, x**1) and we update 2FT! and A*+! as follows:
IkJrl _ :L‘k + Gk(’l"k + (Gk)T)\k)

)\k-‘,—l —)\k +pk®(xk+l’xk+l)

Foralli=1,...,n: If 2Pt > 1 set 2F =1 and if :z:é“'1 < 0 set xf“ =0
4. Foralli=1,...,n: If)\iH < 0 set)\iﬂ =0

©w

Algorithm 3.2:

As the set defined by the expectation constraint is the same as the set defined
by the chance constraint , it is also convex. With the approximation by convolution
method showed in section we can approximate the gradient of the constraint function
E[1g+(c—>",; xixi)]. This allows to solve the ECK P (4] using the stochastic Arrow-Hurwicz
algorithm.

3.2 Calculating lower bounds

To calculate lower bounds on the solution value, we use a B&B algorithm based on an
algorithm by |[Cohn and Barnhart| (1998). In we first explain and justify the ranking
of the items using dominance relationships. Then, we present the B&B algorithm (see
algorithm and its variant for solving a CKP.

10

3.2.1 Ranking the items

In order to define the binary tree used in the B&B algorithm, we rank our items. We therefor
introduce dominance relationships and the item are ranked according to the number of items
they dominate and, in the case where several items dominate the same number of items, by
their value of ;—2

The dominance relationships are also used to prune subtrees during the algorithm in
order to decrease the number of considered nodes and evaluated branches: whenever an
item is rejected, we also reject all those items that are dominated by the rejected one.

SRKP: To introduce dominance relationships in the case of SRK P, we consider the vari-
ations of the (deterministic equivalent) objective function @ Jdet-

Clearly, the increase of one of the rewards per weight unit r; increases the objective
function if and only if z; > 0.

To study the variations when changing the value of &, we calculate the derivative of Jget
with respect to &:

Pty =—d-1 (57)

06 o

As f is strictly positive, this shows that whenever an item is replaced by another one
having the same mean and reward per weight unit but smaller variance, the value of the
objective function increases. Based on this study, |Cohn and Barnhart| (1998) introduced
two types of dominance relationships: We say that item ¢ dominates item k if one of the
following holds:

1w = pg, 70 > 18, 03 < O,

20 i S gy 00 SOk, it g 2 Tt g
CKP: In the case of CCKP and ECK P, it is more complicated to introduce dominance
relationships as in the case of SRK P. This is due to the fact that modifying 6 cannot be

interpreted as easily as in the former case. The only, very special case where one can say
that item ¢ dominates item k is the following:

Loy = pg, 05 =0k, 1y >=1%

Most of the time, the items are thus simply ranked by their value of r;. This ranking
gave the best results in the numerical tests (compared e.g. with the ranking used for SRK P
or a random ranking) but can surely be improved.

3.2.2 The branch-and-bound algorithm

B&B algorithm is based on the B&B algorithm by |Cohn and Barnhart| (1998]). We just
added step [4

The algorithm has been constructed for SRK P. In order to use this algorithm to solve
CCKP or ECKP, we modify step [2] in order to respect the chance or the expectation

11

Branch-and-Bound Algorithm

1. Rank the items as described in section [3.2.1}] This ranking defines the binary tree with
the highest ranked item at the root.

2. Plunge the tree as follows: Beginning at the root of the tree, add the current item if
and only if the objective function increases. Assign the maximum value of the objective
function found to the variable INF'. This variable stores the current lower bound of the
objective function. Add the found branch to the list of branches. Set the associated
upper bound SUP to infinity.

3. If there is no branch left on our list of branches, go to step [7]

Else take the branch of our list of branches having the maximum objective function
value. Go to step [

4. If the associated upper bound SUP is greater than the current lower bound INF, go
to step [0
Else delete the branch from the list. Go to step

5. If there is no accepted item left in the selected branch that does not already have a
plunged or rejected subtree, delete the branch from the list. Go back to step [3}

Else, following our ranking, choose the first accepted item that does not already have
a plunged or rejected subtree. Calculate an upper bound SUP for the subtree defined
by rejecting this item. Go to step [6]

6. If SUP < INF, reject this subtree, go to step
Else plunge the subtree as described in[2]and add the found branch together with the
value SUP to the list of branches. If the value of the objective function of this branch
is greater than INF, update INF.

Go to step [
7. The current value INF is the optimal solution of problem .

Algorithm 3.3:

constraint: instead of testing if the next item increases the objective function (which is the
case for each item at every time), we check whether the chance or the expectation constraint
is still satisfied when adding the next item. For example, in the case of CCK P, we calculate
®(c) i.e. the cumulative distribution function of the probability variable X = g(x, x). Then,
depending on whether the obtained value is greater or equal than the prescribed probability,
we accept or reject the item.

In step [5] the calculation of upper bounds for subtrees is realized by fixing the value of
items that are higher in the tree at 1 or 0 and solving the continuous problem having the x;
of the remaining items as decision variables. In the case of SRK P as well as ECKP and
the corresponding stochastic gradient algorithms this is easily done: at each iteration, we
just leave out the recalculation of the fixed x;. In the case of the SOCP reformulation of
CCKP, we solve the SOC'P subproblem with respect to the index set I of the items not
already fixed (see subsection [3.1.2)).

12

4 Numerical results

In this section we present our numerical results concerning the algorithms presented above.
The first part contains the results of the algorithms for solving the continuous knapsack
problems, namely the stochastic gradient method, the stochastic Arrow-Hurwicz algorithm
as well as the algorithm by Boyd et al. to solve the SOCP reformulation. The first two
algorithms are implemented in C' language. The third one is an open source interior point
algorithm whose source code can be obtained as C- as well as M AT LAB-code. We use the
C-code. In the second part of the section, the results for the B&B algorithm are presented.
It has also been implemented in C-language. All tests were carried out on an Intel PC with
1GB RAM.

Ob- reward per mean of variance ;—2
ject weight unit the weight o? '
i Hi

1 2 212 47 0.583
2 2 203 21 0.873
3 3 246 42 1.389
4 2 223 21 0.873
5 2 230 15 1.033
6 1 233 10 0.316
7 2 235 11 1.206
8 2 222 33 0.696
9 1 210 36 0.167
10 2 299 42 0.617
11 2 256 25 0.800
12 3 250 19 2.065
13 1 194 24 0.204
14 3 207 22 1.919
15 1 182 14 0.267

Table 1: Values of the Cohn-instance

We test our methods on the same dataset as in (Cohn and Barnhart| [1998) as well as a
sample of randomly created instances for each of the chosen dimensions. The Cohn-instance
is presented in Table The last column states the value of the ratio r?/o; used for the
ranking of the items. The penalty factor used is 5. For the random datasets, the weight
means are generated from a normal distribution with mean 225 and standard deviation 25,
the variances from a uniform distribution on the interval [5,50] and the rewards per weight
unit have equal probability to be 1, 2 or 3. In the case of SRK P, the penalty factor is
always 5 and for CCKP and ECKP we choose a prescribed probability of p = 0.6. For
each dimension we created 50 instances. Table and [4f show the average values over these
50 instances.

In the case of SRK P, our stochastic gradient algorithm and the corresponding B&B

13

algorithm are compared with the method of Cohn and Barnhart. In their paper, they
propose three different upper bounds to use within their B&B algorithm. However, they do
not give any details of which upper bound to use at which moment. In order to compare our
approach with that of Cohn and Barnhart, we therefore compute their upper bounds one
after another in step [p| of our B&B algorithm. As soon as an obtained bound is sufficiently
tight to prune the currently evaluated subtree, we leave the computation of the remaining
bounds out. This procedure assures that the number of considered nodes is at most as large
as when using their exact policy.

4.1 The continuous stochastic knapsack problem

An example for the convergence of the stochastic gradient method involving approximation
by convolution is shown in Figure As shown in the figure and confirmed by numerical
tests, the best result found does not change very much (less than 1%) after iteration 500.
Based on this observation, we use in the following a stopping criterion for the stochastic
gradient algorithm of 500 iterations.

il

4670 —

A P e
M,w(im ‘f“ ‘f”r"“‘h‘ a *,n‘r e, o «mﬁmlw'“'\ ¥

Wl “\ (et i ﬁ,'” I e

'

—_—

(‘ r l” m M w

4665 —

4660 —

Obijective function

4655 —

4650 | | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of iterations of the stochastic gradient algorithm
Figure 1: Results for the stochastic gradient algorithm solving the continuous SRK P

An example for the convergence of the stochastic Arrow-Hurwicz algorithm involving
approximation by convolution is presented in Figure[2] The first graph shows the variations
of the value of the objective function whilst the second figure presents the variations of the
Lagrange multiplier X\. As in the case of the stochastic gradient algorithm, we fix a maximum
number of 500 iterations for all further tests.

14

o 4710

>

alu

ion

u

@ 4680

WMN‘MW’“WWWW

o]

1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000
lterations

o
1

R

(9]
T

IS
T

Lagrange factor
N w

1 1 1 1 1 1 1 |
1000 2000 3000 4000 5000 6000 7000 8000
lterations

o
o

Figure 2: Results for the Arrow-Hurwicz algorithm solving the continuous FC K P

In Table 2] and Table [3] we compare for one thing the found optima of the continuous
problems, or, more precisely, the calculated upper bounds for the combinatorial problem.
For another, we compare the CPU time (in milliseconds) needed to compute them. C./B.
stands for Cohn/Barnhart, i.e. for the (unique) Cohn-instance of dimension 15.

Table [2] gives the results for SRK P. We observe that especially for small dimensions it
takes much less time to compute all three upper bounds proposed by Cohn and Barnhart
than to solve the continuous relaxation by a stochastic gradient algorithm. But, while the
CPU time of the stochastic gradient algorithm increases proportional to the dimension, this
is not the case for the upper bounds proposed by Cohn and Barnhart.

Table [3| gives the results for CK P. As expected, the SOC P algorithm solves the contin-
uous C'K P more accurate than the Arrow-Hurwicz algorithm, i.e. it finds a better solution
value. Concerning the CPU time, the SOCP algorithm needs as much time as the Arrow-
Hurwicz algorithm to solve the continuous problems of very small dimension (n = 15, 20).
However, for higher dimensional problems the Arrow-Hurwicz algorithm is much faster than
the SOCP method. The SOCP algorithm is also very memory space consuming: for di-
mensions higher than n = 180 the memory space of the computer used is not sufficient to
solve the continuous problem using the SOCP program by Boyd et al..

15

Stochastic gradient & Cohn/Barnhart
Approx. by convolution
n Optimum CPU-time Optimum CPU-time
(msec) (msec)

C./B. | 4676.208 | 4] 4759.000 | <1
15 4934.583 4 5146.927 <1
20 6690.744 6 6936.017 <1
30 10279.908 9 10529.541 <1
50 16954.343 12 17224.803 <1
75 25519.688 16 25811.775 <1
100 33846.095 22 34131.754 <1
150 50607.008 31 50932.104 <1
250 85098.136 52 85459.649 1
500 170110.459 104 170503.708 3
1000 340922.966 240 340822.740 5
5000 1703811.095 1110 1704935.949 107
20000 6813327.586 4940 6815663.089 1759

Table 2: The numerical results for the continuous SRK P

4.2 The combinatorial stochastic knapsack problem

The numerical results for the combinatorial problem are shown in Table [4. Notice that the
CPU time needed by the B&B algorithm (columns 6 and 11) is given in seconds. Columns
5 and 10 contain the number of considered nodes, i.e. the number of times an upper bound
is calculated during the B&B algorithm.

The upper table of Table [4| contains the results for SRK P. We observe that when using
the Cohn and Barnhart upper bounds during the B&B algorithm much more nodes have to
be considered. This can be explained by the less tighter upper bounds and, consequently,
a smaller number of rejected subtrees. For small dimensions (n = 15,20, 30) this is coun-
terbalanced by the small CPU times needed to calculate one upper bound. In the case of
higher dimensional problems, the B&B algorithm involving a stochastic gradient algorithm
becomes more competitive due to the tighter upper bounds and the resulting smaller number
of considered nodes.

Studying the lower table in Table @l we observe that when using the Arrow-Hurwicz
algorithm a smaller number of nodes has to be considered to solve CK P than with the
SOCP program. This is not, as in the case of SRK P, due to a better choice of the
upper bounds as in both algorithms the upper bounds are supposed to be the solution of
the relaxed problem. Nevertheless, we get smaller values when calculating them using the
Arrow-Hurwicz algorithm. This is based on the fact that the Arrow-Hurwicz algorithm
involving approximation by convolution only computes approximate solutions of the relaxed
problems. These non-optimal solutions have, of course, a smaller value than the optimum
and the chosen "upper bounds” seem to be tighter. As the duality gaps of the chosen
instances are very small, these smaller "upper bounds” have a great impact, i.e. a lot

16

Arrow-Hurwicz & SOCP
Approx. by convolution
n Optimum CPU-time Optimum CPU-time
(msec) (msec)
C./B. | 4696.097 | 3] 4696.413 | 4
15 4954.546 4 4954.704 4
20 6713.081 5 6713.987 6
30 10308.640 7 10310.45 18
50 16992.450 11 16993.514 65
75 25568.059 17 25569.379 213
100 33902.283 22 33903.672 503
150 50676.686 32 50678.312 1802
250 85187.249 52 ok ok
500 170239.531 107 oK ok
1000 340529.019 216 ok ok
5000 1704560.250 1100 oK ok
20000 6814158.873 4317 ok ok

** exceeding of the available memory space

Table 3: The numerical results for the continuous CCKP/ECK P

more subtrees are rejected. This can theoretically also cause the exclusion of a subtree that
contains the optimal solution. Anyway, in the case of our instances, the found optima are
in both cases nearly the same.

As mentioned, Table [4] only shows the results for the combinatorial problem in the case
where the average needed time over all 50 instances is at most 1h. In case of the stochastic
gradient algorithm involving approximation by convolution, this limit is respected when
n = 75 but exceeded when n = 100. For n = 100, the the CPU-time is smaller or equal
than 2h in about 78% of the cases and only 6% of the instances needed more than 24h to
terminate. For n = 150, 44% of the tests finished in at most 2h and 56% of the instances
needed not more than 24h.

5 Conclusion

In this paper we study, solve and compare two different variants of a stochastic knapsack
problem with random weights. We apply a B&B algorithm and solve continuous subprob-
lems in order to provide upper bounds. We use a stochastic gradient method for solving
the continuous stochastic knapsack problem with simple recourse (SRK P) and an SOCP
algorithm as well as a stochastic Arrow-Hurwicz algorithm for solving the constrained ver-
sion of the continuous stochastic knapsack problem (CKP). In the cases of the stochastic
gradient and the Arrow-Hurwicz algorithms, approximated gradients are computed using

17

Stochastic gradient & Approximation by convolution Cohn/Barnhart
n Upper CPU- Optimum consid- CPU- Upper CPU- Optimum consid- CPU-
Bound time ered time Bound time ered time
(msec) nodes (sec) (msec) nodes (sec)
continu- B-and-B continu- B-and-B
ous ous
C./B. : 4676.208 7 4 7 4618 7 100 0.342 : 4759.000 7 <1 7 4618 7 144 7 0.000
15 4934.583 4 4890 41 0.139 5146.927 <1 4890 65 0.002
20 6690.744 6 6651 80 0.348 6936.017 <1 6651 280 0.003
30 10279.908 9 10265 455 2.808 10529.541 <1 10265 2525 0.037
50 16954.343 12 16951 13173 131.171 17224.803 <1 16951 364960 779.325
75 25519.688 16 25514 63972 934.550 25811.775 <1 * * *
100 33846.095 22 * * * 34131.754 <1 * * *
* CPU-time exceeds 1h
=
Arrow-Hurwicz & Approximation by convolution SOCP
n Upper CPU- Optimum consid- CPU- Upper CPU- Optimum consid- CPU-
Bound time ered time Bound time ered time
(msec) nodes (sec) (msec) nodes (sec)
continu- B-and-B continu- B-and-B
ous ous
C./B. || 4696.097 | 3] 4595 | 122 0.469 || 4696.413 | 4] 4595 | 122 | 0.406
15 4954.546 4 4840 34 0.116 4954.704 4 4840 34 0.082
20 6713.081 5 6634 71 0.305 6713.987 6 6634 66 0.236
30 10308.640 7 10272 345 2.314 10310.45 18 10272 350 1.801
50 16992.450 11 16974 1880 19.473 16993.514 65 16975 7406 70.914
75 25568.059 17 25547 3743 57.397 25569.379 213 25548 62175 1535.520
100 33902.283 22 33893 94984 1932.097 33903.672 503 * * *
150 50676.686 32 * * * 50678.312 1802 * * *

* CPU-time exceeds 1h

Table 4: Numerical results for the combinatorial SRK P (upper table) and CCKP/ECKP (lower table)

approximation by convolution.

Concerning SRK P, we compare the B&B algorithm involving the stochastic gradient
method with a method from literature (Cohn and Barnhart| (1998)). Our numerical tests
show, that our upper bounds are tighter, i.e. less nodes have to be considered. This results
for higher dimensional problems in smaller CPU times. In the case of CK P, the Arrow-
Hurwicz algorithm shows a better performance for large size instances as the time to compute
one upper bound is smaller. In addition, the SOC P algorithm can not solve large instances
due to its higher memory requirements which results in an exceeding of the available memory
space for high dimensional problems.

References

Andrieu, L., Cohen, G., and Vzquez-Abad, F. (2007). Stochastic programming with proba-
bility constraints. http://fr.arxiv.org/abs/0708.0281 (Accessed 24 October 2008).

Agrali, S. and Geunes, J. (2008). A class of stochas-
tic knapsack problems with poisson resource requirements.
http://plaza.ufl.edu/sagrali/research_files/Poisson_. KP_ORL_Submission.pdf ~ (Accessed
24 October 2008).

Babaioff, M., Immorlica, N., Kempe, D., and Kleinberg, R. (2007). A knapsack secretary
problem with applications. In APPROX-RANDOM, pages 16-28.

Boyd, S., Lebret, H., Lobo, M. S., and Vandenberghe, L. (1998). Applications of second-
order cone programming. Linear Algebra and its Applications, 284:193-228.

Boyd, S., Lobo, M. S., and Vandenberghe, L. (1995). Software for second-order cone pro-
gramming. http://www.stanford.edu/~boyd/old_software/socp/doc.pdf (Accessed 24 Oc-
tober 2008).

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

Carraway, R. L., Schmidt, R. L., and Weatherford, L. R. (1993). An algorithm for maximiz-
ing target achievement in the stochastic knapsack problem with normal returns. Nawal
research logistics, 40(2):161-173.

Claro, J. and de Sousa, J. P. (2008). A multiobjective metaheuristic for a mean-risk static
stochastic knapsack problem. www.springerlink.com/index/b668736740218j72.pdf (Ac-
cessed 24 October 2008).

Cohn, A. and Barnhart, C. (1998). The stochastic knapsack problem with random weights:
A heuristic approach to robust transportation planning. In Proceedings of the Triennial
Symposium on Transportation Analysis (TRISTAN III).

Dean, B. C., Goemans, M. X., and Vondrék, J. (2004). Approximating the stochastic
knapsack problem: The benefit of adaptivity. In Proceedings 45th Annual IEEE /5th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 208-217.

19

Ermoliev, Y. M., Norkin, V. I., and Wets, R. J.-B. (1995). The minimization of semicon-
tinuous functions: Mollifier subgradients. SIAM Journal on Control and Optimization,
33(1):149-167.

Goel, A. and Indyk, P. (1999). Stochastic load balancing and related problems. In 40th
Annual Symposium on Foundations of Computer Science, pages 579 — 586.

Harvey M. Salkin, C. A. D. K. (2006). The knapsack problem: A survey. Naval Research
Logistics, 22(1):127-144.

Henig, M. 1. (1990). Risk criteria in a stochastic knapsack problem. Operations Research,
38(5):820-825.

Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Knapsack Problems. Springer-Verlag
(Berlin, Heidelberg).

Kieper, J. and Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression
function. Annals of Mathematical Statistics, 23:462—466.

Kleinberg, J., Rabani, Y., and Tardos, E. (1997). Allocating bandwidth for bursty connec-
tions. In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing,
pages 664 — 673.

Kleywegt, A. J. and Papastavrou, J. D. (2001). The dynamic and stochastic knapsack
problem with random sized weights. Operations Research, 49:26-41.

Kleywegt, A. J., Shapiro, A., and de mello, T. H. (2001). The sample average approximation
method for stochastic discrete optimization. SIAM Journal on Optimization, 12:479-502.

Klopfenstein, O. and Nace, D. (2006). A robust approach to the chance-constrained knapsack
problem. http://www.optimization-online.org/DB_HTML/2006/03/1341.html (Accessed
24 October 2008).

Kolesar, P. J. (1967). A branch and bound algorithm for the knapsack problem. Management
Science, 13(9):723-735.

Kushner, H. J. and Yin, G. G. (2003). Stochastic Approzimation and Recursive Algorithms
and Applications. Springer Verlag.

L’Ecuyer, P. and Yin, G. (1998). Budget dependent convergence rate of stochastic approxi-
mation. SIAM Journal Optimization, 8:217-247.

Lin, G., Lu, Y., and Yao, D. (2008). The stochastic knapsack revisited: Switch-over policies
and dynamic pricing. Operations Research, 56:945-957.

Lu, Y. (2008). Approximating the value functions of stochastic knapsack prob-
lems: a homogeneous monge-ampére equation and its stochastic counterparts.
http://arxiv.org/abs/0805.1710 (Accessed 24 October 2008) (to be published in Inter-
national Journal of Mathematics and Statistics).

20

Marchetti-Spaccamela, A. and Vercellis, C. (1995). Stochastic on-line knapsack problems.
Mathematical Programming, 68:73—-104.

Martello, S. and Toth, P. (1977). An upper bound for the zero-one knapsack problem and a
branch and bound algorithm. European Journal of Operational Research, 1(3):169-175.

Morton, D. P. and Wood, R. K. (1997). Advances in Computational and Stochastic Op-
timization, Logic Programming and Heuristic Search, chapter On a stochastic knapsack

problem and generalizations, pages 149-168. Kluwer Academic Publishers (Norwell, MA,
USA).

Nevel’son, M. B. and Has’minskii, R. Z. (1976). Stochastic Approzimation and Recursive
Estimation. American Mathematical Society.

Polyak, B. T. (1990). New method of stochastic approximation type. Automation and
Remote Control, 51:937-946.

Prekopa, A. (1995). Stochastic Programming. Kluwer Academic Publishers (Dordrecht,
Boston).

Robbins, H. and Monro, S. (1951). A stochastic approximation method. Annals of Mathe-
matical Statistics, 22:400-407.

Ross, K. W. and Tsang, D. H. K. (1989). The stochastic knapsack problem. IFEFE Trans-
actions on Communications, 37(7):740-747.

Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and opportunities.
Computers and Chemical Engineering, 28:971983.

Sun, X., Sheng, H., and Li, D. (2007). An exact algorithm for 0-1 polynomial knapsack
problems. Journal of industrial and management optimization, 3(2).

21

	Introduction
	Mathematical formulations
	Problem solving methods
	Calculating upper bounds
	The stochastic knapsack problem with simple recourse
	The constrained knapsack problem

	Calculating lower bounds
	Ranking the items
	The branch-and-bound algorithm

	Numerical results
	The continuous stochastic knapsack problem
	The combinatorial stochastic knapsack problem

	Conclusion

