Stochastic Knapsack Problem with random weights

Stefanie Kosuch and Abdel Lisser

Université Paris XI - Sud LRI - GraphComb

May 25, 2009

• c > 0: Knapsack weight capacity

- c > 0: Knapsack weight capacity
- *n* items

- c > 0: Knapsack weight capacity
- n items
- $r_i > 0$: reward per weight unit of item i

- c > 0: Knapsack weight capacity
- n items
- $r_i > 0$: reward per weight unit of item i
- w_i: weight of item i

The Stochastic Knapsack Problem with Random Weights

- c > 0: Knapsack weight capacity
- n items
- $r_i > 0$: reward per weight unit of item i
- χ_i : independently normally distributed weight of item i

The Stochastic Knapsack Problem with Random Weights

- c > 0: Knapsack weight capacity
- n items
- $r_i > 0$: reward per weight unit of item i
- χ_i : independently normally distributed weight of item i
- μ_i, σ_i : mean and standard deviation of χ_i

The Stochastic Knapsack Problem with Random Weights

- c > 0: Knapsack weight capacity
- n items
- $r_i > 0$: reward per weight unit of item i
- χ_i : independently normally distributed weight of item i
- μ_i, σ_i : mean and standard deviation of χ_i
- $x \in \{0,1\}^n$: decision vector

Outline

- 1 Introduction
- 2 Stochastic Knapsack Problem with simple recourse
 - Problem Formulation
 - Analytic description
- Problem Solving Method
 - Relaxed Stochastic Knapsack Problem
 - Approximation by convolution
 - Branch-and-Bound Algorithm

$$\max_{x \in \{0,1\}^n} \mathbb{E}\left[\sum_{i=1}^n r_i \chi_i x_i\right] - d \cdot \mathbb{E}\left[\left[\sum_{i=1}^n \chi_i x_i - c\right]^+\right]$$

$$\max_{\mathbf{x}\in\{0,1\}^n} \mathbb{E}\left[\sum_{i=1}^n r_i \chi_i \mathbf{x}_i\right] - d \cdot \mathbb{E}\left[\left[\sum_{i=1}^n \chi_i \mathbf{x}_i - c\right]^+\right]$$

•
$$[x]^+ := \max(0, x) = x \cdot \mathbb{1}_{\mathbb{R}^+}(x) \ (x \in \mathbb{R})$$

$$\max_{\mathbf{x}\in\{0,1\}^n} \mathbb{E}\left[\sum_{i=1}^n r_i \chi_i x_i\right] - d \cdot \mathbb{E}\left[\left[\sum_{i=1}^n \chi_i x_i - c\right]^+\right]$$

- $[x]^+ := \max(0, x) = x \cdot \mathbb{1}_{\mathbb{R}^+}(x) \ (x \in \mathbb{R})$
- \bullet $\mathbb{1}_{\mathbb{R}^+}$: indicator function of the positive real interval

$$\max_{\mathbf{x}\in\{0,1\}^n} \mathbb{E}\left[\sum_{i=1}^n r_i \chi_i x_i\right] - \mathbf{d} \cdot \mathbb{E}\left[\left[\sum_{i=1}^n \chi_i x_i - c\right]^+\right]$$

- $[x]^+ := \max(0, x) = x \cdot \mathbb{1}_{\mathbb{R}^+}(x) \ (x \in \mathbb{R})$
- ullet $\mathbb{1}_{\mathbb{R}^+}$: indicator function of the positive real interval
- d > 0

$$\max_{\mathbf{x}\in\{0,1\}^n} \mathbb{E}\left[\sum_{i=1}^n r_i \chi_i x_i\right] - d \cdot \mathbb{E}\left[\left[\sum_{i=1}^n \chi_i x_i - c\right]^+\right]$$

- $[x]^+ := \max(0, x) = x \cdot \mathbb{1}_{\mathbb{R}^+}(x) \ (x \in \mathbb{R})$
- ullet $1_{\mathbb{R}^+}$: indicator function of the positive real interval
- d > 0

$$\max_{\mathbf{x}\in\{0,1\}^n} \mathbb{E}\left[\sum_{i=1}^n r_i \chi_i x_i\right] - d \cdot \mathbb{E}\left[\left[\sum_{i=1}^n \chi_i x_i - c\right]^+\right]$$

- $[x]^+ := \max(0, x) = x \cdot \mathbb{1}_{\mathbb{R}^+}(x) \ (x \in \mathbb{R})$
- ullet $1_{\mathbb{R}^+}$: indicator function of the positive real interval
- d > 0: penalty factor per weight unit

Outline

- 1 Introduction
- 2 Stochastic Knapsack Problem with simple recourse
 - Problem Formulation
 - Analytic description
- 3 Problem Solving Method
 - Relaxed Stochastic Knapsack Problem
 - Approximation by convolution
 - Branch-and-Bound Algorithm

• f, F: density / cumulative distribution function of the standard normal distribution

- f, F: density / cumulative distribution function of the standard normal distribution
- $\hat{\mu} := \sum_{i=1}^{n} \mu_i x_i$, $\hat{\sigma} := \sqrt{\sum_{i=1}^{n} \sigma_i^2 x_i^2}$

- f, F: density / cumulative distribution function of the standard normal distribution
- $\hat{\mu} := \sum_{i=1}^{n} \mu_i x_i$, $\hat{\sigma} := \sqrt{\sum_{i=1}^{n} \sigma_i^2 x_i^2}$

- f, F: density / cumulative distribution function of the standard normal distribution
- $\hat{\mu} := \sum_{i=1}^{n} \mu_i x_i$, $\hat{\sigma} := \sqrt{\sum_{i=1}^{n} \sigma_i^2 x_i^2}$

$$J_{det}(x) =$$

$$\sum_{j} r_{j} \mu_{j} x_{j} - d \cdot \left[\hat{\sigma} \cdot f \left(\frac{c - \hat{\mu}}{\hat{\sigma}} \right) - (c - \hat{\mu}) \cdot \left[1 - F \left(\frac{c - \hat{\mu}}{\hat{\sigma}} \right) \right] \right]$$

Branch-and-Bound algorithm

- Branch-and-Bound algorithm
- Solve linear relaxation to compute upper bounds

- Branch-and-Bound algorithm
- Solve linear relaxation to compute upper bounds
- Use stochastic gradient algorithm to solve linear relaxation

- Branch-and-Bound algorithm
- Solve linear relaxation to compute upper bounds
- Use stochastic gradient algorithm to solve linear relaxation
- Apply "Approximation by convolution" method to approximate the gradient of the objective function

Outline

- 1 Introduction
- 2 Stochastic Knapsack Problem with simple recourse
 - Problem Formulation
 - Analytic description
- 3 Problem Solving Method
 - Relaxed Stochastic Knapsack Problem
 - Approximation by convolution
 - Branch-and-Bound Algorithm

Definition

Relaxed Stochastic Knapsack Problem (with simple recourse):

$$\max_{x \in [0,1]^n} \mathbb{E}\left[\sum_{i=1}^n r_i \chi_i x_i\right] - d \cdot \mathbb{E}\left[\left[\sum_{i=1}^n \chi_i x_i - c\right]^+\right]$$

Definition

Relaxed Stochastic Knapsack Problem (with simple recourse):

$$\max_{\mathbf{x} \in [\mathbf{0},\mathbf{1}]^n} \mathbb{E}\left[\sum_{i=1}^n r_i \chi_i x_i\right] - d \cdot \mathbb{E}\left[\left[\sum_{i=1}^n \chi_i x_i - c\right]^+\right]$$

Stochastic Gradient Algorithm

Choose x^0 in X_{ad}

Choose
$$x^0$$
 in $X_{ad} = [0, 1]^n$

Choose
$$x^0$$
 in $X_{ad} = [0, 1]^n$
At step k, draw $\chi = (\chi_1, ..., \chi_n)$

Choose
$$x^0$$
 in $X_{ad} = [0, 1]^n$
At step k, draw $\chi = (\chi_1, ..., \chi_n)$
Update x^k as follows:

Stochastic Gradient Algorithm

Choose x^0 in $X_{ad} = [0, 1]^n$ At step k, draw $\chi = (\chi_1, ..., \chi_n)$ Update x^k as follows:

$$x^{k+1} = x^k + \epsilon^k r^k$$

where $r^k = \nabla_x j(x,\chi)$ and $(\epsilon^k)_{k\in\mathbb{N}}$ is a σ -sequence

where
$$j(x, \chi) = \sum_{i} r_{j} \chi_{j} x_{j} - d \cdot [\sum_{i=1}^{n} \chi_{i} x_{i} - c]^{+}$$

The Stochastic Gradient Algorithm

Stochastic Gradient Algorithm

Choose x^0 in $X_{ad} = [0, 1]^n$ At step k, draw $\chi = (\chi_1, ..., \chi_n)$ Update x^k as follows:

$$x^{k+1} = x^k + \epsilon^k r^k$$

where $r^k=
abla_{\times}j(x,\chi)$ and $(\epsilon^k)_{k\in\mathbb{N}}$ is a σ -sequence For all i=1,...,n: If $x_i^{k+1}>1$ set $x_i^{k+1}=1$ / If $x_i^{k+1}<0$ set $x_i^{k+1}=0$

where
$$j(x, \chi) = \sum_{i} r_{i} \chi_{j} x_{j} - d \cdot [\sum_{i=1}^{n} \chi_{i} x_{i} - c]^{+}$$

The Stochastic Gradient Algorithm

Stochastic Gradient Algorithm

Choose
$$x^0$$
 in $X_{ad} = [0, 1]^n$
At step k, draw $\chi = (\chi_1, ..., \chi_n)$
Update x^k as follows:

$$x^{k+1} = x^k + \epsilon^k r^k$$

where
$$r^k = \nabla_x j(x,\chi)$$
 and $(\epsilon^k)_{k\in\mathbb{N}}$ is a σ -sequence For all $i=1,...,n$:
If $x_i^{k+1}>1$ set $x_i^{k+1}=1$ / If $x_i^{k+1}<0$ set $x_i^{k+1}=0$

where
$$j(x,\chi) = \sum_{i} r_{i}\chi_{j}x_{j} - d \cdot [\sum_{i=1}^{n} \chi_{i}x_{i} - c]^{+}$$

The Stochastic Gradient Algorithm

Stochastic Gradient Algorithm

Choose
$$x^0$$
 in $X_{ad} = [0, 1]^n$
At step k, draw $\chi = (\chi_1, ..., \chi_n)$
Update x^k as follows:

$$x^{k+1} = x^k + \epsilon^k r^k$$

where
$$r^k = \nabla_x j(x,\chi)$$
 and $(\epsilon^k)_{k\in\mathbb{N}}$ is a σ -sequence For all $i=1,...,n$:
If $x_i^{k+1}>1$ set $x_i^{k+1}=1$ / If $x_i^{k+1}<0$ set $x_i^{k+1}=0$

where
$$j(x,\chi) = \sum_{i} r_j \chi_j x_j - d \cdot \mathbb{1}_{\mathbb{R}^+} (\sum_{i=1}^n \chi_i x_i - c) (\sum_{i=1}^n \chi_i x_i - c)$$

Outline

- 1 Introduction
- 2 Stochastic Knapsack Problem with simple recourse
 - Problem Formulation
 - Analytic description
- Problem Solving Method
 - Relaxed Stochastic Knapsack Problem
 - Approximation by convolution
 - Branch-and-Bound Algorithm

Definition

The convolution of two real-valued functions is defined as follows:

Definition

The *convolution* of two real-valued functions is defined as follows:

$$(f*h)(x) := \int_{-\infty}^{\infty} f(y)h(x-y) dy$$

Approximation by convolution	

Let h be a pair, continuous and non-negative function such that:

$$\int_{-\infty}^{\infty} h(x) \, \mathrm{d}x = 1$$

•
$$arg max h(x) = 0$$

Let h be a pair, continuous and non-negative function such that:

$$\bullet \int_{-\infty}^{\infty} h(x) \, \mathrm{d}x = 1$$

• arg max h(x) = 0

$$h_r(x) := \frac{1}{r} h\left(\frac{x}{r}\right)$$

Let h be a pair, continuous and non-negative function such that:

- $\bullet \int\limits_{-\infty}^{\infty} h(x) \, \mathrm{d}x = 1$
- arg max h(x) = 0

$$h_r(x) := \frac{1}{r} h\left(\frac{x}{r}\right)$$

Then, for small values of r > 0, we get the following approximation of a locally integrable real valued function f:

$$f_r(x) := (f * h_r)(x) = \frac{1}{r} \int_{-\infty}^{\infty} f(y) h\left(\frac{y-x}{r}\right) dy$$

Let h be a pair, continuous and non-negative function such that:

- $\bullet \int_{-\infty}^{\infty} h(x) \, \mathrm{d}x = 1$
- arg max h(x) = 0

$$h_r(x) := \frac{1}{r} h\left(\frac{x}{r}\right)$$

Then, for small values of r > 0, we get the following approximation of a locally integrable real valued function f:

$$f_r(x) := (f * h_r)(x) = \frac{1}{r} \int_{-\infty}^{\infty} f(y) h\left(\frac{y-x}{r}\right) dy$$

$$h := \frac{3}{4}(1 - x^2)\mathbb{1}_1(x)$$

 $(\mathbb{1}_1$: indicator function of the interval]-1,1[)

$$h := \frac{3}{4}(1 - x^2)\mathbb{1}_1(x)$$

Approximated gradient

$$\nabla_{x}j(x,\chi) = \begin{pmatrix} r_{1}\chi_{1} \\ \vdots \\ r_{n}\chi_{n} \end{pmatrix} +$$

$$d \cdot \left(\frac{3}{4r} \left(1 - \left(\frac{g(x,\chi)}{r}\right)^2\right) \mathbb{1}_1\left(\frac{g(x,\chi)}{r}\right) \chi \cdot g(x,\chi) - \mathbb{1}_{\mathbb{R}^+}(g(x,\chi)) \cdot \chi\right)$$

$$h := \frac{3}{4}(1 - x^2)\mathbb{1}_1(x)$$

Approximated gradient

$$\nabla_{x}j(x,\chi) = \begin{pmatrix} r_{1}\chi_{1} \\ \cdot \\ \cdot \\ \cdot \\ r_{n}\chi_{n} \end{pmatrix} +$$

$$d \cdot \left(\frac{3}{4r} \left(1 - \left(\frac{\mathbf{g}(\mathbf{x}, \chi)}{r}\right)^{2}\right) \mathbb{1}_{1}\left(\frac{\mathbf{g}(\mathbf{x}, \chi)}{r}\right) \chi \cdot \mathbf{g}(\mathbf{x}, \chi) - \mathbb{1}_{\mathbb{R}^{+}}(\mathbf{g}(\mathbf{x}, \chi)) \cdot \chi\right)$$

where $g(x,\chi) := \sum_{i=1}^{n} \chi_i x_i$

Outline

- 1 Introduction
- Stochastic Knapsack Problem with simple recourse
 - Problem Formulation
 - Analytic description
- 3 Problem Solving Method
 - Relaxed Stochastic Knapsack Problem
 - Approximation by convolution
 - Branch-and-Bound Algorithm

$$\bullet \ \mu_i = \mu_j, \ r_i \geq r_j, \ \sigma_i \leq \sigma_j$$

$$\bullet \ \mu_i = \mu_j, \ r_i \geq r_j, \ \sigma_i \leq \sigma_j$$

•
$$\mu_i \leq \mu_j$$
, $\sigma_i \leq \sigma_j$, $r_i \cdot \mu_i \geq r_j \cdot \mu_j$

$$\bullet \ \mu_i = \mu_j, \ r_i \geq r_j, \ \sigma_i \leq \sigma_j$$

•
$$\mu_i \leq \mu_j$$
, $\sigma_i \leq \sigma_j$, $r_i \cdot \mu_i \geq r_j \cdot \mu_j$

Item i dominates item j if one of the following holds:

- $\mu_i = \mu_j$, $r_i \geq r_j$, $\sigma_i \leq \sigma_j$
- $\mu_i \leq \mu_j$, $\sigma_i \leq \sigma_j$, $r_i \cdot \mu_i \geq r_j \cdot \mu_j$

Motivation

$$\frac{\partial J_{det}}{\partial \hat{\sigma}}(x) =$$

$$\hat{\sigma} := \sqrt{\sum_{i=1}^n \sigma_i^2 x_i^2}$$

Item i dominates item j if one of the following holds:

- $\mu_i = \mu_j$, $r_i \geq r_j$, $\sigma_i \leq \sigma_j$
- $\mu_i \leq \mu_j$, $\sigma_i \leq \sigma_j$, $r_i \cdot \mu_i \geq r_j \cdot \mu_j$

Motivation

$$\frac{\partial J_{det}}{\partial \hat{\sigma}}(x) = -d \cdot f\left(\frac{c - \mu}{\sigma}\right) < 0$$

$$\hat{\sigma} := \sqrt{\sum_{i=1}^{n} \sigma_i^2 x_i^2}$$

Ranking

Ranking

- Number of objects dominated
- value of $\frac{r_i^2}{\sigma_i}$

Ranking

Plunging

Ranking

Plunging

- Beginning at the root, add current item iff objective function increases
- INF ← maximum value of the objective function found
- \bullet Add branch found to list of waiting branches; set assigned value SUP to ∞

Ranking

Plunging

Branch choosing

Ranking

Plunging

Branch choosing

- If no branch left on list of branches \rightarrow step G.
- Else take branch having maximum objective function value. → step D.

Ranking

Plunging

Branch choosing

Delete bad branches

Ranking

Plunging

Branch choosing

Delete bad branches

- If $SUP > INF \rightarrow \text{step E}$.
- Else delete branch. \rightarrow step C.

Ranking

Plunging

Branch choosing

Delete bad branches

Calculating upper bounds

Ranking

Plunging

Branch choosing

Delete bad branches

Calculating upper bounds

- If no accepted item left in selected branch that does not already have a plunged or rejected subtree, delete branch from list. \rightarrow step C.
- Else choose first accepted item that does not already have a plunged or rejected subtree. Calculate upper bound SUP for the subtree defined by rejecting this item. → step F.

Ranking

Plunging

Branch choosing

Delete bad branches

Calculating upper bounds

Plunging

Ranking

Plunging

Branch choosing

Delete bad branches

Calculating upper bounds

Plunging

- If SUP \leq INF, reject subtree, \rightarrow E.
- Else plunge subtree as described in B, add the found branch with value SUP to list. Update INF. → step C.

Ranking

Plunging

Branch choosing

Delete bad branches

Calculating upper bounds

Plunging

The current value INF is the optimal solution.

Thank you!

Merci!

Danke!

n	Approximation by convolution					Cohn/Barnhard: "The Stochastic Knapsack Problem with Random Weights"				
	Upper Bound	CPU-time (msec) continuous	Optimum	considered nods	CPU-time (sec) B-and-B	Upper Bound	CPU-time (msec) continuous	Optimum	considered nods	CPU-time (sec) B-and-B
C./B.	4676.208	4	4618.025	100	0.342	4759.000	0	4618.025	144	0.000
15	4934.583	4	4889.781	41	0.139	5146.927	0	4889.781	65	0.002
20	6690.744	6	6650.513	80	0.348	6936.017	0	6650.517	280	0.003
30	10279.908	9	10264.683	455	2.808	10529.541	0	10264.756	2525	0.037
50	16954.343	12	16950.579	13173	131.171	17224.803	0	16950.757	364960	779.325
75	25519.688	16	25513.555	63972	934.550	25811.775	0	*	*	*
100	33846.095	22	*	*	*	34131.754	0	*	*	*
150	50607.008	31	*	*	*	50932.104	0	*	*	*
250	85098.136	52	*	*	*	85459.649	1	*	*	*
500	170110.459	104	*	*	*	170503.708	3	*	*	*
1000	340922.966	240	*	*	*	340822.740	5	*	*	*
5000	1703811.095	1110	*	*	*	1704935.949	107	*	*	*

-Mean over 50 randomly created instances-

^{*} average CPU time exceeds 1h