
Stochastic Shortest Path Problem
with Delay Excess Penalty

Stefanie Kosuch 1

Laboratoire de Recherche en Informatique, Université Paris Sud, Orsay, France

Abdel Lisser 2

Laboratoire de Recherche en Informatique, Université Paris Sud, Orsay, France

Abstract

We study and solve a particular stochastic version of the Restricted Shortest Path
Problem, the Stochastic Shortest Path Problem with Delay Excess Penalty. While
arc costs are kept deterministic, arc delays are assumed to be normally distributed
and a penalty per time unit occurs whenever the given delay constraint is not
satisfied. The objective is to minimize the sum of path cost and total delay penalty.

Keywords: restricted shortest path, stochastic optimization, projected gradient
algorithm, active set methods, branch-and-bound

1 Introduction

The Restricted Shortest Path Problem (RSSP) is a well studied extension of
the famous Shortest Path Problem. It consists in finding a shortest or least

1 Email: stefanie.kosuch@lri.fr
2 Email: abdel.lisser@lri.fr

cost path from a node s to a node t in a graph subject to an additional con-
straint that typically models the restricted delay.
RSSP has first been studied by Joksch in 1966 ([1]). Unlike the Shortest
Path Problem that can be solved in polynomial time, RSSP is part of the
NP-complete problem class.
In this paper we study a particular stochastic version of RSSP , the Stochas-
tic Shortest Path Problem with Delay Excess Penalty (SSPD). In this model
the arc delays are random and we assume them to be independently normally
distributed.
The problem has a simple recourse formulation. This means that the random-
ness of the delay is handled by introducing a penalty that occurs in case the
delay constraint is not satisfied. The objective is to minimize the sum of path
cost and expected total delay penalty.
This particular stochastic variant of RSSP has been previously studied and
shown to be NP-hard (see [3]). However, the authors of [3] assumed discrete
distributions for the delay.
We propose to solve the problem by applying a problem specific branch-and-
bound algorithm. The main idea of this algorithm is to search the admissible
set (all directed paths from s to t) using a sort of depth-first search on the
given directed graph. In order to reject subspaces of the search space, lower
bounds are computed by solving the corresponding relaxed problems.

2 Problem Formulation

Let in the following G = (V,A) be a directed, simple graph without directed
cycles. To every arc a ∈ A we assign a cost c(a) > 0 as well as a normally dis-
tributed delay with strictly positive mean represented by the random variable
δ(a). We further assume for two distinct arcs a and a′ that δ(a) and δ(a′) are
independent.
The Stochastic Shortest Path Problem with Delay Excess Penalty (SSPD) con-
sists in finding a directed path between two given vertices s and t such that
the cost of the path plus the expected delay cost are minimal. The delay cost
is based on a penalty per time unit d > 0 that has to be paid whenever the
total delay excesses a given maximum delay D > 0.

SSPD can be formulated as a stochastic combinatorial optimization prob-
lem in the following way: Let x ∈ {0, 1}|A| such that each component xa of x
represents an arc a ∈ A. For a directed path P we define the corresponding
x = x(P) such that xa = 1 if and only if a ∈ P . This leads to the following

mathematical formulation of the SSPD:

min
x∈{0,1}|A|

E[j(x, χ)] :=
∑
a∈A

c(a)xa + d · E[[
∑
a∈A

δ(a)xa −D]+] (1a)

s.t. ∀v ∈ V :
∑
w∈V :

(v,w)∈A

x(v,w) −
∑
w∈V :

(w,v)∈A

x(w,v) =

1 if v = s,
−1 if v = t,
0 else.

(1b)

Problem (1) can be compactly written as:

(SSPD) min
x∈{0,1}|A|

E[j(x, χ)] (2a)

s.t. Mx = b (2b)

Remark that we can drop arbitrarily one of the constraints in (1b) in order to
obtain a matrix M with linearly independent rows.
In the case of normally distributed delays the objective function of SSPD has
a deterministic equivalent formulation and can thus be evaluated exactly (see
[2]).

3 Problem Solving Method

The idea to solve SSPD (2) is the following: To search the graph for the
optimal path we apply a branch-and-bound algorithm on the search space P
of directed paths from s to t (see subsection 3.2). In order to sort out some of
the subsets of P that do not contain the optimum we calculate lower bounds
by solving the corresponding relaxed, i.e. continuous version of problem (2)
(see subsection 3.1).

3.1 Solving the relaxed SSPD

First of all we remark that the continuous relaxation of problem (2) is a con-
vex problem (see for example [2]). This allows us to solve it using a Projected
Stochastic Gradient method. The basic idea is the following: at each iteration

k ≥ 1 we first calculate an estimation of the gradient ∇xj(x
k−1, δ

k
) (where

xk−1 is the feasible solution vector computed in the previous iteration and

δ
k

is a realization of the random vector δ that is regenerated at every iter-
ation; see subsection 3.1.1). This gradient is projected on the null space of
the matrix M . xk is then computed as usual, i.e. as the sum of xk−1 and the
projected gradient times the step size. In case we obtain negative components

of x, we adapt (i.e. shorten) the step size (subsection 3.1.2). An active set
is introduced in order to handle active non-negativity constraints (subsection
3.1.3).
The final algorithm is given in Algorithm 1. In the following subsections we
define the used variables and give further details on the functioning of the
algorithm.

3.1.1 Estimating the gradient of j

j is differentiable everywhere except for those points x where
∑

a∈A δ(a)xa −
D = 0. It is easy to see that the set of all these points is a null set. It can thus
be neglected as the aim of all stochastic gradient algorithms is to approximate
the gradient of the expectation of j via a sample procedure. Therefore, we
define the gradient of j as follows:

∇xj(x, δ) =

 c if
[∑

a∈A δ(a)xa −D ≤ 0
]

c+ d · δ otherwise

3.1.2 Projection and update of x

At iteration k ≥ 1, let rk := ∇xj(x
k−1, δ

k
). The projection of this gradient

on the null space of M is done by multiplying it with the projection matrix
TM := In −MT (MMT)−1M . Then, x is updated as follows:

xk = xk−1 − ρk(TM · rk)

where ρk is the step size given by a σ-sequence (ρk)k∈N
3 .

However, the predefined step size ρk might be too large in the sense that we
can obtain components of xk that do not lie in the unit interval.
In order to handle negative components we proceed as follows: Let Ik− be the
index set of the strictly negative components of xk. We then compute the
maximum step size that keeps xk in the feasible region by

ρk = min
i∈Ik−

{
xk−1i

(TM · rk)i

}
and update x accordingly:

xk = xk−1 − ρk(TM · rk)
3 A σ-sequence is a sequence (ρk)k∈N that satisfies limk→∞ ρk = 0 and

∑∞
k=0 ρ

k →∞.

It follows:

Proposition 3.1 Let x0 be a feasible solution of the relaxed SSPD. Then,
using the update procedure abovementionned, xk remains feasible for the re-
laxed SSPD for all k ≥ 1.

3.1.3 Introducing the active set

Imagine the following situation: Let xk−1i = 0 for a k ≥ 1 and an index
i ∈ {1, . . . , n}. After computing the projected gradient and updating x we
obtain xki < 0. Consequently, ρk = 0, i.e. we are (and will keep) stuck on the
current, probably non-optimal solution.
To prevent this, we introduce a set of additional equality constraints, the so
called active set Ak. As this set is continuously updated, we use a superscript
that indicates in which iteration the set Ak is active.
For k ≥ 1 let Ik−10 := {i |xk−1i = 0}. The active set for iteration k is then
defined as

Ak = { [xi = 0] |i ∈ Ik−10 }
Now, instead of projecting rk on the null space of the matrix M , we project
it on the null space of a matrix Zk: This matrix consists of the matrix M
enlarged by |Ik−10 | rows that correspond to the equality constraints in Ak:

Zk
i = Mi for i = 1, . . . , n

Zk
i = eτk−1(n−i) for i = n+ 1, . . . , n+ |Ik−10 |

where {τ k−1(1), . . . , τ k−1(|Ik−10 |)} = Ik−10 and ei is the i − th row of the n-
dimensional identity matrix. Remark that Zk might have linearly dependent
rows. In this case the projection matrix can be computed as T k = I−(Zk)+Zk

where (Zk)+ is the unique Moore-Penrose pseudoinverse of Zk.
If the computed projected gradient is zero, we have obtained an optimum of

the deterministic variant of problem (2) with delay vector δ
k

and additional
equality constraints given byAk. In this case we compute Lagrange multipliers
associated with the equality constraints by solving the linear eqaution

Zk(Zk)Tλ = −Zkrk

If all those multipliers associated with the constraints in Ak are positive, we
have reached the optimal solution of the deterministic variant of problem (2)

with delay vector δ
k
. In this case we stop the algorithm. Otherwise, we

remove the constraint with the most negative multiplier from Ak and start a
new iteration.

Algorithm 1 : Projected Stochastic Gradient Algorithm (see subsections
3.1.1-3.1.3 for (variable) definitions and further details)

• Let (ρk)k∈N be a σ-sequence. Choose x0 feasible for the SSPD (2) (for
example using depth-first search on the graph). Set k = 1.

• At iteration k ≥ 1, define the active set Ak. Then, for all i ∈ Ik−10 , let βi
be the outcome of a Bernoulli trial with success probability pki . If βi = 1,
remove the equation [xi = 0] from Ak.

• For all a ∈ A draw a sample δ
k
(a) of δ(a) according to its normal distri-

bution.
• Determine Zk and let T k be the matrix for projection on the null space

of Zk. Compute the gradient rk := ∇xj(x
k−1, δ

k
).

If Tk · rk = 0: Compute the Lagrange multipliers of the current equality
constraints.
· If all multipliers associated with the constraints in Ak are positive,

STOP.
· Else delete the constraint from Ak having the most negative associ-

ated multiplier. Set k = k + 1 and start a new iteration.
Else: Update xk as follows: xk = xk−1 − ρk(T k · rk)
· If mini∈{1,...,n} x

k
i < 0: Define Ik− = {i |xki < 0} and compute a new

step size: ρk = mini∈Ik−

{
xk−1
i

(Tk·rk)i

}
Update xk as follows: xk = xk−1 −

ρk(T k · rk)
· Set k = k + 1 and start a new iteration.

However, due to the stochastic nature of our algorithm, keeping an equality
constraint in Ak until a new optimum is found might be too restrictive: As the
computation of the gradient of our objective function is based on one single
realization of δ, we might ”erroneously” set a component xki to zero. Therefore,
we further introduce for all k ≥ 1 and for all i ∈ Ik−10 the probability pki that
constraint [xi = 0] is removed from Ak at the beginning of iteration k. Several
policies for the choice of pki might be considered.

3.2 Branch-and-bound framework

Definition 3.2 Let P be a directed path. We say that an arc a = (v, w) has
its origin in P , if v ∈ P but a 6∈ P . For a path P we define the set of all arcs
that have their origin on P as OP .

The branch-and-bound algorithm can be stated as follows: First we solve
the relaxed version of the overall problem, which gives us a solution of the

relaxation x̃ as well as a first lower bound LB. We then begin to search for
a feasible binary solution by plunging the graph (see phase 4). The obtained
directed path P from s to t together with the corresponding lower bound
LB(P) = LB are stored in the list of waiting s-t-paths L. In addition we
store the value of x̃ for all arcs a ∈ OP in a variable xP (a). The solution value
of SSPD given by P is our first upper bound and it is stored in the variable
UB. Then, each further iteration of our branch-and-bound algorithm consists
of (up to) five phases:

Phase 1: Selecting a branch
If L is empty, the algorithm terminates. The current value of UB is the opti-
mal solution value.
Otherwise, we select a path P ∈ L such that LB(P) = minQ∈L LB(Q).

Phase 2: Selecting an arc
If no arc in OP is left that has not already be examined (i.e. max{xP (b)|b ∈
OP} = −1, see Phase 5), we delete P from L, end the iteration and go back
to phase 1. Otherwise, we propose two different policies:

a) We choose the arc a ∈ OP with xa = max{xP (b)|b ∈ OP}.
b) We go to the first vertex v on P such that there still exists at least

one arc (v, w) ∈ OP that has not already be examined (i.e. such that
max{xP (b)|∃w ∈ A : b = (v, w)} 6= −1). We then choose the arc a such
that xP (a) = max{xP (b)|∃w ∈ A : b = (v, w)}.

If adding a to the subpath s-P -v leads to a non-feasible solution, we reject a
and choose another arc in OP following either policy a) or policy b).

Phase 3: Calculating a lower bound
Let a = (v, w) be the arc chosen in phase 2. Consider the relaxed subproblem
of SSPD obtained by fixing the first part of the s-t-path to s-P -(v, w). Solv-

ing this subproblem gives us a lower bound L̃B on its binary solution and a
solution vector x̃. If L̃B < UB we go to phase 4. Otherwise, we reject a and
choose a new arc (phase 2).

Phase 4: Plunging
In order to find a new s-t-path P ′ containing the sub-path s-P -(v, w) different
policies might be considered, for example:

i) Starting from vertex w, we always add the outgoing arc with the highest
value of x̃.

ii) We continuously update the objective function value of the sub-path P̃
already chosen. Arrived at a new vertex u, we compute for all u′ ∈ V with
(u, u′) ∈ A the objective function value for the sub-path s − P̃ − (u, u′)
and choose the subpath with the highest value.

One could also consider a randomized choice of the next arc to add: As the
sum of the x̃-values of the outgoing arcs is always one, we could interpret these
values to be the probability that the arc is chosen next.

Phase 5: Storage
Path P ′ is stored together with the corresponding lower bound LB(P ′) = L̃B
in the list of waiting paths L. In addition, we define for all arcs a ∈ OP ′ the
value xP ′(a) as follows: Previously examined or rejected arcs with origin in
P ′ are assigned the value −1. For those non-examined arcs a that have their
origin on s-P -v xP ′(a) is set to xP (a). For the rest of the outgoing arcs, we
store the corresponding component of x̃.
If the solution value of the SSPD given by P ′ is higher than the current upper
bound UB, we update UB.

4 Conclusion

In this paper we solve a stochastic version of the restricted shortest path
problem. We propose to use a branch-and-bound framework to search the
set of feasible paths. Lower bounds are obtained by solving the corresponding
convex relaxations which in turn is done using a Projected Stochastic Gradient
algorithm involving an active set method.

References

[1] H. C. Joksch. The shortest path problem with constraints. Journal of
Mathematical Analysis and Applications, 14:191–197, 1966.

[2] Stefanie Kosuch and Abdel Lisser. Upper bounds for the 0-1 stochastic knapsack
problem and a b&b algorithm. Annals of Operations Research (Online First),
2009. http://dx.doi.org/10.1007/s10479-009-0577-5.

[3] Bram Verweij, Shabbir Ahmed, Anton J. Kleywegt, George Nemhauser, and
Alexander Shapiro. The sample average approximation method applied
tostochastic routing problems: A computational study. Computational
Optimization and Applications, 24(2-3):289 – 333, 2003.

	Introduction
	Problem Formulation
	Problem Solving Method
	Solving the relaxed SSPD
	Branch-and-bound framework

	Conclusion
	References

