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Abstract

In this paper we propose a mixed integer bilevel problem having a prob-
abilistic knapsack constraint in the first level. The problem formulation
is mainly motivated by practical pricing and service provision problems
as it can be interpreted as a model for the interaction between a ser-
vice provider and clients. We assume the probability space to be discrete
which allows us to reformulate the problem as an equivalent deterministic
bilevel problem. By the mean of a reformulation as linear bilevel problem,
we obtain a quadratic optimization problem, the so called Global Linear
Complementarity Problem. Based on this quadratic problem, we propose
a procedure to compute upper bounds on the initial problem by using a
Lagrangian relaxation and an iterative linear minmax scheme. Finally,
numerical experiments confirm that the scheme practically converges.
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1 Introduction

In network markets, service providers are increasingly presented with optimiza-
tion problems including not only network capacity or routing constraints but
also market interactions with competitors [24, 3, 6, 17]. Pricing and capacity
decisions are hardly ever separated: on the one hand, the optimal utilisation of
the capacity of a given network depends on the demand. On the other hand,
one cannot properly adapt its prices to the market if its network is fixed, since
the demand will most likely vary according to the prices. It is therefore natural
to formulate the problem of pricing one’s services under the network constraints
at hand as a bilevel optimization problem [12, 9, 7]: while the leader (e.g. a



service provider) maximizes its profit, the follower (e.g. customers) minimizes
the cost of the services by choosing among a set of competitors. The follower’s
problem is hence a constraint of the leader’s problem.

In the deterministic bilevel literature, pricing in networks problems are usually
modeled with bilinear objective functions (see e.g. [22, 10, 5]). In our study of
this problem we however assume that the cost and pricing functions as well as
the network and capacity constraints are linear (cf. subsection 1.1 for a network
application).

In the networks considered, we assume that the demand is uncertain (e.g. inter-
net traffic). The leader can thus optimize its profit by replacing the deterministic
demand-satisfying constraint by a probability constraint. The complete problem
can be stated as a Stochastic Linear Bilevel Problem:

(SLBP) max clz+dly (1a)
s.t. Az + Bly < b, (1b)
P{w'(w)z < s(w)} > (1 - a), (1c)
0<z<1,,, (1d)
y € argmax chx + dby, (le)
y
s.t. A%z 4+ B%y <b?, (1f)
y=0. (1g)

where x (resp. y) is the vector of n, (resp. n,) decision variables of the leader
(resp. follower), ci,co, € R, dy,dy € R™, Al € R™*n Bl ¢ RmMi*ny
bl € R™, A2 ¢ R™2*X"e B2 ¢ R™2X™, h?2 € R™2 and 0 < o < 1. 1,, denotes
the vector of ones of dimension n. The components of w(w) € R’* and the right
hand side s(w) € R are random variables that all depend on the realization w
of the probability space 2.

Both the objective function of the leader (1a) and the follower (1e) depend on
the leader’s strategy = and the follower’s strategy y. The probabilistic knapsack
constraint (1c) ensures that customers will be served with a « risk. Note that
this model as well as the results presented in this paper can easily be extended
to multiple stochastic knapsack constraints. Constraints (1f) are relative to the
customers demand.

Throughout this paper, we will study the general SLBP case. We show in the
following application how this work can be used to tackle pricing problems in
networks. In particular, we linearize the bilinear objective functions of an exist-
ing application model. The modeling method we provide requires an additional
reasonable hypothesis, but might be used to linearize other such problems.

1.1 A pricing in networks application

We will now illustrate the general model (1) with a network application, moti-
vated by the deterministic application presented in [5]. Let us describe without
loss of generality a context-simplified version of the application considered in



[6]. An operator rents capacities on an oriented network with capacitated arcs
to a set of customers. A client can split its demand between the operator and
the competition. Their demand is formulated as a market, i.e. couple of origin
and destination vertices on the network. From the provider’s point of view, a
single predetermined path is used to serve each market. For a given market,
the operator and the competition have each a single offer. We suppose that
the competition can serve the demand of all the clients and that its tariffs are
known. The operator sets the prices and the capacity allocated to a market.
The capacity of an arc is split between markets. Clients minimize the total cost
to satisfy the demand, by choosing between the operator and the competition.
The application we present derive directly from this real-world application, by
adding stochasticity to a previously deterministic capacity constraint. Also, we
make the assumption that a client cannot split its demand. This might seem
like a strong hypothesis, however this is in general the case when each client
has a small demand: it may be neither necessary nor financially interesting to
contract multiple services. This hypothesis will make it possible to linearize
the bilinear objective functions. The constraint ensuring that the capacity of
markets are respected was moved from the lower-level to the upper-level prob-
lem. From the application point of view, this means that the provider cannot
refuse clients. Therefore, the only possibility to adjust the number of clients is
to change the prices.

Let us now formally state the application model. Let a network N = (V, A)
together with the following parameters be given:

e A set of source/sink pairs M C V? (markets)
e A path p,, from source to sink for all m € M
e A maximum capacity ¢, for all a € A

On this network, an operator o as well as a group of competitors ¢ allocate
capacity to a set of clients S. Each client s € S is interested in exactly one
market mgs € M. Each client has a maximum demand ds; which defines the
demand vector d € ]le‘. We assume that operator o knows the minimum price
T¢ that the competition proposes to client s. We can therefore also assume that
the operator itself has an upper bound I'? on the price he fixes for client s.
We introduce a random variable w(w)e [0, 1]1S! representing the fraction of the
capacity actually used by the clients as this demand is assumed not to be known
in advance. In order to optimally use the network we allow a risk a of an
overbooking.

In this bilevel problem the leader is the operator o. He has to fix its price for
each of the clients and the amount of capacity allocated to the different markets.
The leader’s decision variables are defined as follows:

e T?: price of the operator for client s
e t,: price that has to be paid by client s to the operator

e (,,: capacity allocated for a given market m € M



The follower is the group of clients: each client has to decide whether to buy
from operator o (represented by setting the follower’s decision variable o4 to 1)
or from the competition (o5 = 0).

This problem can be modeled by the following stochastic linear bilevel problem:

max ts (2a)
To 4.0
SES
s.t. ts < dsTY VseS (2b)
ts S dsosrs VS € S (2C)
Z Cnm <cq Vaec A (2d)
meM:a€Epm
P{ Z ws(w)dsos < Cp} > 1—« Ym e M (2e)
SES:ms=m
0 € ar min ts + Tsds(1 — o4 2f
WD IUED DGR (21

The objective function (2a) means that the operator maximizes the total price
paid by clients. Constraints (2b) and (2c) are a linearization of the bilinear
term dsT20s, replaced by ts in both objective functions. Constraints (2d) splits
the capacity of the arcs between markets. The stochastic constraints (2e) let
the leader overbook market capacities with a given overload risk. The follower’s
problem (2f) reduces to choosing the least expensive solution.

Remark that in this bilevel problem the follower’s decision variables appear
in the probability constraint. However, all results and models presented in
this paper can easily be extended to the case where the probability constraint
contains any subset of the union of leader’s and follower’s decision variables.
Also, note that even though the lower-level problem possesses binary variables,
it is equivalent to consider continuous variables due to its structure. As in the
original application, we adopt an optimistic tie-breaking rule.

1.2 Literature review and solution method

Stochastic and bilevel aspects of mathematical programming have been very
little studied together, with the exception of the pioneering work of [23, 29, 8,
33, 3]. Most of these works are interested in network problems. For single-level
stochastic problems, please refer to [16].

A very recent publication concerning stochastic bilevel problems with knapsack
constraint is that of Ozaltin et al. [27]. The authors solve a stochastic version
of the bilevel knapsack problem studied by Dempe and Richter in [11]. In their
variant of the problem the decision of the leader consists in choosing the (one-
dimensional) right hand side of the knapsack constraint (i.e. the capacity of the
knapsack). Depending on this value, the follower has to solve a common knap-
sack problem. Ozaltin et al. extend this model by introducing an uncertainty in
the lower-level problem. More precisely, they assume that the right hand side of
the knapsack constraint in the lower-level does not only depend on the leader’s



decision but also on a random variable.

Throughout, we will assume the probability space §2 to be discrete, i.e. having
a finite number of realizations, called scenarii. From a practical point of view,
one can imagine the service provider to lend capacity in packages rather than
continuously, i.e. customers have to choose between several options of maxi-
mal needed capacity. If, in contrary, the customers are free to use the network
to route their commodities, i.e. if the actual probability space is continuous,
our assumption and the resulting problem reformulations might nevertheless be
helpful as one could approximate the probability space by generating a finite
number of representative scenarii. From a theoretical point of view, assuming a
finite sample space has the advantage that the problem can be reformulated as a
deterministic equivalent problem by treating the constraints for every scenario
separately. In our case this leads to a Mixed Integer Linear Bilevel Problem
(MILBP).

MILBPs have been studied in [32] and the authors show that in case where
integer variables only appear in the first level, the problem can be equivalently
reformulated as a Linear Bilevel Problem (LBP). In [15] the authors show how
to further convert an LBP into a single level, bilinear program. We apply both
techniques to our problem. However, our objective is not to solve the resulting
quadratic problem exactly, which could for example be achieved by reformulat-
ing the problem as an MIP (see [15]) or by using other quadratic programming
methods. Instead, we propose upper bounds by relaxing the bilinear constraints
in the objective function. This gives rise to a bilinear min-max problem of the
following form: The constraints are linear and separable, i.e. there exists a
partition of the variables that also partitions the constraints into two disjoint
sets. When fixing one of these sets of variables, the resulting problem is either
a linear minimization, or maximization problem.

Bilinear problems of this type have been studied in the literature (see [19]).
However, to the best of our knowledge all of these studies concerned pure
minimization (resp. maximization) problems known as bilinear programming
problems with separate (or disjoint) constraints. Due to the structure of these
problems it is obvious why the decomposition of the initial problem is the basis
of most solution methods. By simply iteratively solving the two subproblems
(or the primal of one and the dual of the other) one however cannot ensure
global con vergence. The most common approaches to guarantee that the al-
gorithm converges towards a global maximum are cutting plane ([20],[30]) and
branch-and-bound ([13],[2]) methods (for a survey see e.g. [1] or [14]).

As in our case one of the subproblems is a maximization, while the other is a
minimization problem, we propose a minmax scheme that alternately solves the
two problems. The convergence to the global optimum of the bilinear minmax
problem is ensured by continuously introducing new cuts to both problems.
There has been an extensive research on minmax problems. A paper that treats
a minmax problem with a similar structure to our problem is [28]: as in our case,
the studied minmax problem has separable linear constraints and a quadratic
objective function. The solution procedure proposed is a finite iteration method
that, in each iteration, solves a quadratic subproblem. Although we cannot



guarantee that our algorithm finds the optimal solution in finitely many itera-
tions, its advantages are the simple structure and the fact that we have to solve
a sequence of linear programs, instead of a sequence of quadratic programs.
Furthermore, the numerical tests indicate that the sequence converges, up to a
given tolerance, after finitely many steps.

The remainder of this article is structured as follows: In section 2 we replace the
probabilistic constraint (1c) by a set of equivalent linear constraints using the
assumption that only finitely many scenarii have non-zero probability. In section
3, we further transform the problem into a quadratic programming problem. In
section 4, we suggest and analyze a method to compute upper bounds on the
initial problem by solving a relaxation using an iterative minmax scheme. We
further improve this scheme in section 5 in order to obtain a convergence guar-
antee. Finally, we conduct numerical experiments in section 6 which illustrate
the good convergence properties of our method.

2 From SLBP to the (Deterministic Equivalent)
Linear Bilevel Problem (LBP)

As we consider the case where the sample space (2 is finite, w has only a finite
number of scenarii wy, ...,wr. Let us define p* := P{w = wy}, then

K
Zpk =1, pr =0
k=1
For each scenario wg,k =1,..., K we introduce an auxiliary binary variable zj

as follows:
0 if the scenario is considered
Zk = .
1 otherwise

We shall simplify the notations by defining for all k =1,..., K:

wy = w (W), sk = s (wi), who= (wf, ., wk)

For all k=1,..., K, we define M}, such that

Ng
My, = E wf — Sk
i=1



Thus, problem (1) can be reformulated as the following mixed integer bilevel
problem:

(MILBP) max ciz+diy

T,z
st. Az + Bly <b',
whr < sp+ Myz, k=1,...,K,

3a
3b

~—~ o~

)

)

plz < a, (3c)
0<z<1,,, (3d)
z € {0,1}%, (3e)
y € argmax chx + dby, (3f)

y

s.t. A%z + By < V7, (3g)
y > 0. (3h)

Constraints (3b) ensure that, if scenario wy, is not covered (i.e. 2z, = 1), then
the adopted strategy x does not have to respect the knapsack constraint for this
scenario. However, as per constraint (3c), the probability of occurrence of the
uncovered scenarii must be below the risk «. Note that

whr <sp+ Mz, k=1,....K

with M = maxy—1,_ g M} is a more frequent manner than (3b) to write stochas-
tic knapsack constraints. However, allowing the M} values to be different for
constraints (3b) would yield tighter LP-relaxations. As shown in [32], we can
now reformulate the mixed integer bilevel problem (3) as a linear one:

(LBP) max daz+dy

s.t. Az + Bly <b', (4a)
whr < sp+ Myzy, k=1,..., K, (4b)
plz < a, (4c)
0<z<1,,, (4d)
0<z<1g, (de)
v =0, (4f)
(y,v) € argmax chyr + dby + (1), (4g)

y,v
s.t. A%z + B%y <b?, (4h)
v <z, (4i)
v<1g -z (4)
y > 0. (4k)

where dim(v) = dim(z) = K. The term (1x)%v in the lower-level objective
function forces v to be equal to min(1x — z, z) (see proposition 2.2). Note that
the vector 1k could be replaced by any vector with strictly positive components.



Definition 2.1. We denote (Z,2,§) (resp. (Z,%,7,0)) a feasible solution for
problem (8) (resp. problem (4)) if all upper- and lower-level constraints are
satisfied. A rational solution of problem (3) (resp. (4)) is a feasible solution
such that § (resp. (§,0)) is optimal for the lower-level problem with parameters
Z and Z.

Proposition 2.2 (see proposition 3.2. of [4]).

1.) Let (x*,2*,y*,v*) be a rational optimal solution of LBP (4).
Then v* =0 and (z*, 2*,y*) is a rational optimal solution of MILBP (3).

2.) Let (z*,z*,y*) be a rational optimal solution of MILBP (3).
Then (z*,z*,y*,0) is a rational optimal solution of LBP (4).

Proof. Proof of 1.): By constraint (4f), we have v* = 0. If (z*, z*,y*,0) is a
rational solution, then by its optimality for the lower-level problem, we have
0 = v* = min(1xg — z*,2*), so z* € {0,1}¥. Thus, (z*,y*, 2z*) is feasible for
problem (3). By optimality of (x*,y*, z*,v* = 0), (z*,y*, 2*) is also optimal for
problem (3).
Proof of 2.): It is easy to see that (z*, z*,y*,0) is a rational solution of problem
(4). From 1.) we know that every rational optimal solution (z*,z*,y*,v*) of
problem (4) satisfies v* = 0. It follows that (z*, 2*,y*,0) is an optimal solution
of problem (4).

O

3 From LBP to the Global Linear Complemen-
tarity Problem (GLCP)

We will now continue the transformation process by reformulating LBP as a sin-
gle level GLCP as described in [4]. The idea is to replace the lower-level problem
by a set of constraints that contain (i) the initial constraints of the lower-level
problem and (ii) the complementary slackness conditions of the lower-level prob-
lem. The latter ensures that an optimal solution of the obtained single level
problem is also optimal for LBP. The decision vectors of the new problem are
both the decision vectors of the upper- and lower-level problems as well as the
dual variables of the latter.

Let us first state the dual of the follower’s problem (4g)-(4k):

(DFP) min  A(b? — A%2) + 2 + po(1x — 2),

A p1, 2
st.  (B?)'\>ds, (5a)
Tpcpr + Tgepo > g, (5b)
A, pa, po 2> 0. (5¢)

where A € R™2 (resp. p1 € RE, s € RX) is the dual variable associated with
(4h) (resp. (4i), (4j)). We also need the corresponding complementary slackness



conditions to ensure the optimality of DFP:
MN(? — A%z — B%y) =0 Yy ((BHIA —dy) =0
pi(z—v) =0 ' (Igpr +Ixpe —1g) =0
ph(li —z—v) =0

We obtain the following equivalent Global Linear Complementarity Problem
which is no longer a bilevel problem [4]:

(GLCP) max cr+diy
T,Y,2, A, 11,42
s.t. Az + Bly < b, (6a)
whr < sp+ Myzy, k=1,..., K, (6b)
p'z < a, (6¢)
Az + B?y < b, (6d)
(B%)\ > do, (6e)
Lrcpr +Tgpo > 1k, (6f)
M(? — A%z — B%y) =0, (6g)
piz =0, (6h)
(1 —2) = 0, (61
Y (B2 — da) =0, (63)
0<z<1,,,0<z<1g (6k)
Ys A s p2 = 0. (61)

Note that in this formulation the decision variable v has been eliminated due to
the fact that v = 0.

All reformulations are equivalent so far, i.e. by solving the quadratic problem (6)
we get an optimal solution of the initial stochastic bilevel problem (3) (provided
that the probability space is discrete). Solving a generally nonconvex problem
such as (6) directly is hard. Instead, we propose a method to compute upper
bounds by relaxing it into a linear minmax problem.

4 Calculating upper bounds using Lagrangian
relaxation

We relax the quadratic terms (6g), (6h), (61) and (6j) of GLCP into the objective

function:

E(xayv Z, )\7/1/1’”2) :Cﬁx + dﬁy + )\t(b2 — A2£C — Bzy)
iz 4 ps(Tk — 2) + y'((B)'A = da)



Then the Lagrangian relaxation of GLCP (6) becomes

(LGN)  min max L(z,y,2, A, 1, 42)

A1, p2 TY,2
s.t. Az + Bly < b,
whe < sp+ Myzp, k=1,..., K,

/:]/-\
3
o

NN NI N R NS N

ptz < a, (7c
A%z + B?y < b, (7d
(B*)'\ > dy, (7e
Ikpr + I pe > 1k, (7f

Yy A, pa, pe > 0.

~J
oo

—~ o~
-3
=

Proposition 4.1. Let (x*,y*, 2%, A*, ut, u3) be an optimal solution of the La-
grangian relazation (7).
Then L(x*,y*, z*, \*, uf, ub) is an upper bound on the optimal solution value of

GLCP (6).
Proof. Let (7,7, E,X,ﬁhﬁg) denote an optimal solution of GLCP (6). As
b2 — AT - B*j >0
(BH)'\* —dy >0
Y, A p1, g 2 0
0<z<1
we have
AT +diy < L(T,5,7, 3, 11, 13)
and as (z*,y*, 2%, \*, u3, u3) is optimal for problem (7) we also have
L(2,y, 2, A 1, pg) < L(a%,y7, 25, A%, p1, p3)
]

The Lagrangian relaxation (7) has the nice property that by fixing either the
primal or the dual variables, we obtain a linear problem. This property gives rise
to the idea to solve (7) using an iterative scheme. More precisely, in iteration
N > 1 we solve the following two linear problems:

e The Lagrangian subproblem LGNs(N), maximized over the primal vari-
ables.

e Problem LGNd(XNV), which is mainly composed of (5) (with additional
constraints).

10



In each iteration of the scheme, an auxiliary constraint is added to both problems
in order to enforce the convergence of their optimal solution values towards
the optimal solution value of the relaxation (7). Remark that the so obtained
decrease (resp. increase) of the objective function value of the LGNs (resp.
LGNd) is only monotonic. In section 5 this matter is further discussed and we
propose a method to obtain even strict convergence at each iteration.

The iteration process stops when 5 — v < d or (8 —)/8 < € for small § > 0
and € > 0:

(LGNs(N)) (LGNA(NV))
ﬁnr}:%zxz b %EERM 7
s.t. Atz 4+ Bly < b, sty > L(x9,y?, 29\, 1, po)
B < L(x,y,z, A, ui, nd) g=1,...,N, (9a)
¢g=0,....,N—1, (8a) (B > do, (9b)
whr < s + Myzy, Tpr +Tgpe > 1g, ()
k=1,....,K, (8b) A, 1, e > 0. (9d)
p'z < a, (8¢)
A%z + B*y < b, (8d)
0<z<1,,, (8e)
0<z<lg, (8f)
y > 0. (8g)

where N > 1 is the iteration number, (z%,y%,2%) is an optimal solution of
problem LGNs(q) (¢ =1,...,N), (A, ud, ud) is feasible for problem (7) if ¢ = 0
and it is an optimal solution of problem LGNd(q) if ¢ > 1. In the remainder of
this paper we will use the following notations:

N1: X C IRTHWH{ denotes the set of triples (x,y, z) feasible for problem (7)
N2: A C R denotes the set of triples (), i1, p2) feasible for problem (7)
N3: (BN, 2N, yN, 2V) denotes an optimal solution of problem LGNs(V)

N4: (/N AN 5 1) denotes an optimal solution of problem LGNd(V)

Using the first two notations, problems (8) and (9) of the iterative minmax
scheme can be stated equivalently as

(LGNs(N)) L(x,y,z, N\, pd,ud)

max min
(z,y,2)€X ¢€{0,....,N—1}

LGNd(N i Lz y9. 29 )\
( (N)) o n e (29, y?, 2%, N, pas pi2)

11



We directly get the following properties:

Pl: BN =max(y , .)ex Mingeqo,. n—13 L@y, 2,2 p1i, pud)
P2: gN = minge o, N—1} LN yN 2N X pd ) ud)

P3: 3jn €{0...N -1} st. g~ = (xN,yN,zN,)\jN,u{N,u%N)
P4: vN =mingy y, poyen maxgeqr, vy L(2% Y%, 29\, pa, o)
P5: AN = maxgeqr vy L0750, 202, Y, )

P6: Jiy € {1... N} st. ¥V = Lz, gyt~ 208 AN NV

In the following, we will keep the notations jy and iy introduced in P3 and
Peé.

4.1 Proving upper and lower bounds

Problems LGNs(N) and LGNd(N) provide upper and lower bounds on the
minmax problem (7), respectively:

Lemma 4.2. Let N > 1. Then v~ is a lower bound on the optimal solution
value of the Lagrangian relaxation (7).

Proof. As (29,y%,29) € X for all ¢ =1,..., N, we have for all (A, p1,p2) € A

max E(mayaz7)\7ul7ﬂ2> Z Hlla‘XN‘c(mqayqazqa)H,uh,uQ)
q=1,..,

(z,y,2)eX
It follows
min max L(z,y,z, A >  min max L(z?,y? 29 A,
(A p1,p2)EA (w,yz)}FEX @y s iz) 2 (>\7;t17u2)6Aq:17--}-fN (@ 9% 2% A g, i2)
= "yN
which proves the lemma. O

Lemma 4.3. Let N > 1. Then 3V is an upper bound on the optimal solution
value of the Lagrangian relaxation (7).

Proof. As for all (z,y,2) € X, L(z,y,2,-,-,-) is linear and for all (X, u1, u2) € A
L(-,+ -y A, i1, p2) is linear and X as well as A are compact convex sets, it follows
by von Neumanns’s minimax theorem ([26],[31]) that

min max L((z,y,z, A\, p1, = max min  L(z,y, 2z, \, p1,
timen @y FE B2 A ) = i min ) £ A )

As

BN = max mi

= 24 q 49
(w,y,z)EX a=0,... 'C(x’yvza a/uflmqu)

n
N—1

>  max min  L(z,y, z, A, i1,
T (@y,2)EX (A p1,u2)EA ( Y H1 M2)

the lemma is proved. O

12



As a direct consequence of proposition 4.1 and lemma 4.3 we get that the optimal
solution value of problem LGNs(V) not only provides an upper bound on the
optimal solution value of the Lagrangian relaxation (7) but also on the optimal
solution value of GLCP (6) and thus of the initial SLBP (1) in case of discretely
distributed random variables:

Corollary 4.4. Let N > 1. Then 3~ is an upper bound on the optimal solution
value of GLCP (6).

4.2 Stopping criteria

We define an absolute and a relative stopping criterion. Given 6 > 0 and € > 0,
the iterative scheme stops if the absolute error is less than J, i.e.

BN —AN <sor N —AN 1<
or if the relative error is less than e, i.e.

N _ AN N _ o N—1
(B ﬁN’Y ) ceor B B;Vy ) <.
But does this case automatically arise when one of the problems have found an
optimal solution? I.e., can we immediately detect that an optimal solution has

been found? The answer is yes:

Lemma 4.5. Let N > 0 and suppose that v is the optimal solution value of
the Lagrangian relaxation (7). Then BNTY is also optimal with corresponding
solution vector (xN T yN+t1 ZNFL AN (N oYy,

Proof. If ¥V is optimal for problem (7), we have

O o) =arg | min (o Loz )

(Mp1,p2)EN \(z,y,2)€X
and
YV = max  L(z,y, 2 A, 0, 0)
(z,y,2)€X

As N < L(aNHL yNFL oNFL NG ud 1ud) for all ¢ < N by constraints (8a),
we get

N < max  L(x,y, 2, AV, u, pd) =AY
(z,y,2)€X

It has been shown in lemmata 4.2 and 4.3 that 4" is a LB and gV*! an UB
and on the Lagrangian relaxation (7). It follows BV*! = 4 which terminates
the proof. O

Lemma 4.6. Let N > 0 and suppose that 3V is the optimal solution value
of the Lagrangian relaxation (7). Then v is also optimal with corresponding
solution vector (x™,y™, 2N AN ulV, udY).

Proof. The proof is similar to the previous one. O

Therefore, we know directly if the current solution 8~ or 4" is optimal.

13



4.3 Convergence of the algorithm

In this subsection we will study the convergence of the minmax scheme. We
will therefore suppose that GLCP (6) has a finite optimal solution value.

As in every iteration we add a new constraint to both problems, the following
two lemmata follow immediately:

Lemma 4.7. Let N > 0. Then gN*! < gV,

Lemma 4.8. Let N > 1. Then ANt >+,

O
Lemmata 4.9 and 4.10 show that the minmax scheme is acyclic, i.e. at every
iteration we either find an optimal solution of the Lagrangian relaxation (7) or
generate two new feasible triples (z,y, z) and (\, p1, p2):

Lemma 4.9. Let N > 2. Then either (AN, u¥, ud) # (NP, ul, u) for all
1 <h < N or~ is the optimal solution value of the Lagrangian relaxation (7).

Proof. Let us assume that (AN, udV, pud) = (A2, uft, ub) for a h < N. Then
V= max Ll g2 AN )
> L(a" Ty 2N Y g
= LTy TNt )
> min L@y AN ) =

As ¥V is a lower bound on the Lagrangian relaxation (7) and g"*! is an upper
bound, it follows that vV = "1 and vV (resp. B"*!) is thus the optimal
solution value of the Lagrangian relaxation. O

Lemma 4.10. Let N > 1. Then either (x™,y™,2N) # (2 y", 2") for all
0 < h < N or BN is the optimal solution value of the Lagrangian relazation (7).

Proof. The proof is similar to the previous one. O

5 Modified iterative minmax scheme with con-
vergence guarantee

As the Lagrangian relaxation (7) is continuous, it might theoretically be possible
that we get stuck on a non-optimal solution value for infinitely many iterations,

14



i.e. that there exists an N? > 2 such that either

L(xNO,yNO,ZNO,)\Nofl,ujlvo_l,Mévo_l) is non-optimal, and for all N > N°,

[,( N N N7)\N71, N—-1 N—l)

N® NO _N° yN°—1 NC—1 NO-1
x ay I ul 7:“2 ‘c(m ay I a/\ ,u )

M1 7:u’2
or

L(zNO,yNO,zNO,)\NO,u{VO,uéVO) is non-optimal and for all N > N,

0 0 0 0 0 0
LN, yN 2N AN ) ) = LN N NN ) ).

However, by lemmata 4.5 and 4.6 we can immediately detect such a case as
whenever we have 3V = pNT1 (4N = 4N+1) but vV £ BN*1 we can conclude
that 8% and gV*! (v and yN+!) are non-optimal. In order to handle such
cases, we propose the following modified minmax scheme: Whenever the case
BN = N+ (4N = yN+1) arises we assure that the next upper (lower) bound
produced is better than the previous one by at least § by adding the following
constraint:

B<BN -5 (respectively ~v>~N +6) (12)

Here 6 is the absolute error that defines our stopping criterion, i.e. our algorithm
stops when 3% — 4N < §. So whenever adding a constraint of type (12) leads
to an infeasible problem, we know that the last upper (lower) bound found has
at most a difference of § to the optimal solution value and we can immediately
stop the iterations.

Let LGNs(X,y,2, A, li1, 12, UB) be the function that solves subproblem (8).
If the corresponding problem has a feasible solution, the function returns the
optimal solution value. Otherwise, it returns a predefined value NF. Here
(A, pi1, pi2) are parameters that add a new constraint of the form (8a). This
constraint is kept in the following calls of LGNs.

The function will store the solution vectors in the variables (z,y,z). If the
problem has no feasible solution, (z, y, z) keep their input values. The parameter
UB defines an additional constraint of type (12). This constraint is only kept
for this single iteration. If UB = oo no constraint of type (12) is added.

In the same manner (just changing the roles of parameters and variables and
the sign of the added constraint) we define LGNd(z,y, z, A, u1, p2, LB) with
LB = —o0 meaning that no additional constraint is added.

The proposed modified minmax scheme is stated in Algorithm 5.1. The variables
UB* and LB* store the best upper and lower bound found so far while UB and
LB are the bounds which we make the next calls of our problem solving functions
with. tmpy g and tmpy 5 serve to store the return of these calls. The stopping
criteria defined in section 4.2 are also used for this modified scheme.

6 Numerical experiments

We have performed computational experiments to test the convergence of the
scheme proposed in section 5. To do so, we implemented the scheme presented
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in this paper and applied it on data randomly generated to match the general
models at hand. In the results that follow, we have chosen not to present bound
values, because the optimal values to compare them with are unknown. As a
matter of fact, there is no out-of-the-box available solver to find the optimal
solution of a given bilevel instance. The purpose of these experiments is to
assess the convergence of the scheme we propose.

6.1 Data Generation

We randomly generate instances following the LBP model. Note that this is
tantamount to generating data for the initial model SLBP since both problems
are equivalent under the assumption that (2 is finite.

Although there exist a method to generate linear bilevel instances for which the
optimal solution is known (see [25]), this method cannot produce instances of
a specific type, e.g. fitting the LBP model, due to the solution construction
mechanism.

The parameters of the data generation are the number of variables (resp. con-
straints) for the upper-level problem n, (resp. mj), the number of variables
(resp. constraints) for the lower-level problem n, (resp. mg), the number of
scenarii K and the risk a.

In order to generate a bounded polyhedron, we use the method described in
[18] to set the components of A, B and b: for every row except the last one, A
and B elements are uniformly picked in [—1,1]. Components of the last row are
uniformly chosen in [0, 1]. b is computed in the following manner:

j=1

where p is uniformly chosen in [0,2]. This ensures that the polyhedron defined
by both set of constraints (4a) and (4h) is non-empty and bounded.
Constraints (4b) are generated as follows: for every scenario k, components of
wy, are uniformly chosen in [0, 1]. Let W}, = wi]lnw. We uniformly generate s in
[%Wk, Wi]. The upper bound Wy is chosen so that scenario & is not necessarily
respected. The lower bound %Wk is arbitrarily chosen so that scenario k is not
too restrictive. We set My = W), — si so that z; = 1 disables the constraint.
The vector p of constraint (4c) respects:

0<pe <1, k=1,...,K
pt]lK:].

where pj, is the probability of scenario k. The coeflicients of the objective func-
tions, i.e. components of ¢ and d, are uniformly generated in [0, 10]. This gener-
ation procedure ensures that the feasible region of the LBP instance generated
is bounded, but it does not guarantee non-emptiness.
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Parameters Time(s) #LP

K| ng | ny [|[Min|Avg |Max ||Min |Avg [Max
20| 50 | 50 0 0 1| 17| 29| 57
100 0 0 1|| 18] 32| 44
500 11| 13 17 17| 24| 32
1000 113 | 137| 172|| 16| 20| 27
100| 50 0 0 1] 18] 31| 48
100 0 0 2| 23| 49| 84
500 18| 21| 25 23| 34| 52
1000/| 152 | 180 | 213|| 20| 28| 37
500 50 5 7| 10| 13| 26| 43
100(| 10| 13| 17| 22| 36| 51
500|| 95| 123| 179|| 46| 81| 177
1000/| 431| 549 | 795|| 53| 82| 116
1000 50 || 46| 61| 76| 13| 25| 37
100 73| 89| 108 21| 31| 43
500 293 | 383 | 458|| 34| 57| 89
1000/| 854 (1211|1549 32| 75| 129
50| 50 | 50 0 0 1 15| 28| 56
100 0 0 1| 17| 31| 49
500 13| 15 18 18| 25| 31
1000/| 115| 134 | 166|| 15| 20| 26
100| 50 0 0 1] 23] 32| 53
100 0 0 2| 27| 44| 73
500|| 19| 23| 29|| 26| 36| 56
1000)| 149| 179| 212 20| 28| 41
500 50 6 8| 12| 13| 28| 47
100 11| 14 19 241 36| 58
500|| 89| 127| 199|| 39| 80| 213
1000/| 446 | 535 | 652|| 47| 80| 151
10000 50 || 50| 64| 78| 10| 26| 41
100 78| 93| 114| 23| 32| 43
500 277| 389 | 629|| 25| 56| 89
1000/| 638 (1259 |2235|| 10| 77| 113
100/ 50 | 50 0 0 1|l 19| 28| 45
100 0 0 1| 18| 30| 44
500|| 13| 15| 19| 16| 23| 32
1000/| 115| 140| 166 16| 20| 26
100| 50 0 0 1]| 17] 32| 49
100 1 1 2| 29| 42| 79
500|| 19| 23| 29| 23| 33| 46
1000 156 | 180 | 213|| 21| 27| 37
500 50 7 91 14| 15| 27| 45
100 11| 16| 22 19| 36| 61
5001 102 | 130| 169 50| 77| 151
1000/| 485 | 548 | 720|| 53| 79| 163
1000 50 || 50| 67| 92| 17| 26| 40
100(| 79| 97| 126| 19| 33| 47
500 303 | 405 | 760|| 37| 56| 77
1000/| 867 (1220|1528 || 33| 77| 122

Table 1: Convergence results of the iterative scheme.
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6.2 Numerical Results

The iterative minmax scheme has been implemented in C++4. Linear programs
are solved with Cplex 11!, The absolute (resp. relative) tolerance is § = 1078
(resp. € = 107%). The maximum relative error e has obviously a significant
influence on the number of iterations needed to stop the scheme (see Figure
6.2). We have tested the scheme on instances generated using the procedure

170 T T T

T T
Bounds
160 \ _

150 | i
140 | i

130 | \ —

bound values

120 | ~__ i

110 | -
100 | i

90 B

80 I 1 I 1 1 I 1 I
0 2 4 6 8 10 12 14 16 18

iterations

Figure 1: Plot of the bound values iteratively produced by the minmax scheme
on one of the test instances randomly generated, with n, = n, = K = 100. The
scheme stops after solving 33 linear programs, i.e. at the 17" iteration. After
10 iterations, the relative error amounts to 0.14%. Upon reaching the stopping
criteria, the relative error is 0.01%. This convergence behavior is recurrent.

described in 6.1. The scheme is initialized with a feasible solution of LGNd.
Table 1 summarizes the results of the experiments. Results are only presented
for my = n, and my = n,. For each (K,n,,n,) triple, the scheme has been
tested on 50 instances. For each triple, the minimum, average, maximum time
(in seconds), number of Linear Programs solved (LGNs and LGNd added) are
provided. The numerical tests confirm the theoretical results obtained in the
previous sections, i.e. the iterative scheme reaches a near-optimal solution of
LGN after finitely many steps. Not surprisingly, the time needed to reach the
stopping criteria increases both with the size of the upper-level and lower-level
problems, n, and n,. However, the computing time as well as the number of
LP solved does not vary with the number of scenarii K. Also, a very interesting
phenomenon arises once n, becomes larger than n,: the average number of LP
iterations decreases as n,, increases (see for example the first four valued rows
of column Avg #LP). The explanation is intuitive: the bigger the lower-level
problem, the larger the Lagrangian L(z,y, z, A, u1, 42), and therefore the deeper

!Computation times have been measured on NEC Ezpress5800 120Rh (4*2GHz3GB)
servers, with two single-processed schemes simultaneously running.
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each cut is. Deeper cuts decrease the number of iterations needed to reach the
stopping criteria.

The parameter modeling the risk, «, is set to 0.1 in the test instances presented
here. The scheme also converges for other a values, with little to no variations
in the computing time and the number of LP solved. These numerical results
confirm the convergence properties presented in section 4.

7 Conclusion

We study a novel stochastic bilevel problem with probabilistic knapsack con-
straints, which can be used to jointly optimize network resources and service
pricing. We provide a rich application to network optimization. The initial
problem is transformed into an equivalent quadratic problem, which, in turn, is
relaxed into a linear minmax problem. An iterative approach with convergence
guarantee applied to the latter allows us to find upper bounds of the original
stochastic bilevel problem. Numerical experiments confirm that the method
we propose converges. Further reasearch includes using the scheme to provide
bounds for a Branch and Bound algorithm.
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Iterative minmax Algorithm

Require: 3(x,y, 2, A, 11, pe) feasible for the Lagrangian relaxation (7)
Require: § > 0,¢ >0
UB « oo, UB* + o0
LB «— —o00, LB* +— —00
(A, p1, o) feasible for the Lagrangian relaxation (7)
loop
tmpy g < LGNs(X,y,2, A, ti1, 2, UB)
if tmpy; 5 = NF then

LB*=UB
BREAK LOOP
else

if tmpyp = UB* then
UB — tmpyp — 6
else
UB* «+— tmpyp
UB «—
if UB* —LB* < § or (UB* —LB")/UB* < ¢ then
BREAK LOOP
end if
end if
end if

tmp, g < LGNd(z,y, 2, A, pa, 12, LB)
if tmp; 5 = NF then

UB*=LB
BREAK LOOP
else

else
LB* «— tmp; g
LB +— —o0
if UB*— LB* < or (UB*—LB*)/UB" < € then

BREAK LOOP

end if

end if

end if
end loop

return LB* and/or UB*

Algorithm 5.1: The iterative minmax scheme with convergence guarantee.
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