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Abstract: This paper considers a stochastic version of the shortéistgoablem, the Stochastic Shortest Path Problem
with Delay Excess Penalty on directed, acyclic graphs. ismmiodel, the arc costs are deterministic, while
each arc has a random delay, assumed normally distributpdnalty occurs when the given delay constraint
is not satisfied. The objective is to minimize the sum of théh mast and the expected path delay penalty.
In order to solve the model, a Stochastic Projected Gradiathod within a branch-and-bound framework
is proposed and numerical examples are given to illusttateffectiveness. We also show that, within given
assumptions, the Stochastic Shortest Path Problem withy¥etcess Penalty can be reduced to the classic
shortest path problem.

1 INTRODUCTION considered the problem of selecting a path which
maximizes utility functions or minimizes cost func-
tions in a stochastic network, where arc lengths are
random. Ohtsubo (Ohtsubo, 2003; Ohtsubo, 2008)
selects a probability distribution over the set of suc-
cessor nodes and formulates such a problem as a
Markov decision process. Provan (Provan, 2003),
Polychronopoulos and Tsitsiklis (Polychronopoulos
and Tsitsiklis, 1996) studied expected shortest paths
in networks where information on arc cost values is
accumulated as the graph is being traversed, while
Nikolova (Nikolova et al., 2006) maximizes the prob-

The Shortest Path (SP) problem is one of the best
known combinatorial optimization problems and has
been extensively studied for a long time ((Dijkstra,
1959), (Bellman, 1958), (Ford and Fulkerson, 1962)).
The objective of SP problem is to find a path with
minimum distance, time or cost between two speci-
fied vertices of a given graph. There is a surprising va-
riety of real life applications, including operations re-
search, robotics, transportation and communications,
e.g. figuring out how to direct packets to a destination ability that the path length does not exceed a given
across a network. threshold value

In the deterministic SP problem, all the parame- '
ters (distances, time or cost) are known. However in In this paper, we study a special SSPP, the
real life, due to failure, maintenance or other reasons, Stochastic Shortest Path Problem with Delay Excess
different kinds of uncertainties are frequently encoun- Penalty (SSPD). In this model, each arc has a deter-
tered and must be taken into account, e.g. the traffic ministic cost and a random delay. Furthermore, we as-
delay between two cities. In these cases, it is natu- sume that the arc delays are independently normally
ral to model parameters by continuously or discretely distributed. The problem has a simple recourse for-
distributed random variables, which turns the under- mulation. That means we deal with the delays of
lying problem into a stochastic optimization problem the path by introducing a penalty which occurs in
((Sahinidis, 2004)). Till now, there have been many the case where the delay constraint is not satisfied.
papers presenting the Stochastic Shortest Path ProbThe objective is to minimize the sum of the cost and
lem (SSPP). Hutsona and Shierb (Hutsona and Shierbthe expected path delay penalty. As the determinis-
2009), Mirchandani et al. (Mirchandani and Soroush, tic shortest path problem with delay is NP-hard ((Ver-
1985) and Murthy et al. (Murthy and Sarkar, 1996) weij et al., 2003)), it follows that the SSPD with nor-



mally distributed delays is NP-hard by choosing all x € {0,1}/* such that each componentof x repre-

variances of the arcs equal to 0. sents an ara € A. For a directed patR, we define the
SSPD has been previously studied (see (Verweij corresponding = X(P) such thaky = 1 if and only if

et al.,, 2003)). In this paper, the authors give near- a< P. Then, SSPD can be mathematically formulated

optimal solutions with the Sample Average Approxi- as follows:

mation method. More precisely, the authors approx- . L i

imate the initial SSPD (with arbitrary delay distribu- XEHJ]}&NEU(X’ 6)]._a€;c(a)xa+d ' ]E[aéé(a)xa— D]

tion) with an SSPD with jointly discretely distributed

delays. lifv=s,
We propose a Stochastic Projected GradientStvveV : 2 X(v, W) — Z/ X(wyv)=q -1lifv=t,
method within a branch-and-bound framework to WeV: WeV: 0 else.

. . . (vw)eA (wv)eA
solve the SSPD on directed, acyclic graphs. The main

idea of this algorithm is to search the set of feasible where[-]" = maxX0, -}, E[X] denotes the expectation
solutions (all directed paths from a source nade of a random variabl&X and 8 € Rl is the vector

a sink nodet) using a depth-first search method on consisting of the random variablésa). Note that

the given directed graph. In order to reject subspacesthe constraints of SSPD are the common shortest path
of the search space, lower bounds are computed byconstraints.

solving the corresponding relaxed problems with a SSPD can be compactly written as:

Stochastic Projected Gradient method. Furthermore, .

we show that under a weak assumption, SSPD can be (SSPD) xe{g?;}rrAl E[7(x,9)] (1a)
simplified into the classic shortest path problem and

thus be solved in polynomial time. S.tLMx=b (1b)

The paper is organized as follows. SSPD is intro- \yhereM ¢ R™/A is the node-arc incidence matrix
duced in section 2. In section 3, we prove that SSPD (see (Ahuja et al., 1993)) arlgle R", where all ele-

can be significantly simplified into the classic shortest 1 ants are 0 except theth andt-th element, which
path problem in the case of a positive linear depen- 5re 1 and -1, respectively.

dence between the arc costs and the means and vari- Remark that we can drop arbitrarily one of the
ances of the arc delays. In section 4, the StochastiCghgrtest path constraints of the SSPD in order to ob-
Projected Gradient algorithm is presented and a spe-t5in a full rank matrixM.

qﬂc branch-and-bOL_md algorithm is dem_gned. Insec-  |n the case of independently normally distributed
tion 5, some numerical examples are given to reveal delays, the objective function of SSPD has a deter-
the effectiveness of the approach. The conclusions arénipistic equivalent formulation and can thus be eval-

glven in the last section. uated exactly (see (Kosuch and Lisser, 2010)) :
minA ;C(a)&+d-[6-f(Dgﬁ) )
2 SSPD FORMULATION xe(0M o
+(-D)(1-F(—2))]

Let G = (V,A) be a simple and acyclic digraph, where
V ={1,2,...,n} represents the set of the nodes and . " s
AC {(v,w):v,we V,v+#w} represents the setof arcs. Where H = ZaGAZU(a)Xa' G = \/Jaca0%(a)Xg, In
Each ar@c Ahas an associated caga) > 0 aswell ~ Which u(@) ando*(a) are the mean and the variance
as an independently normally distributed delay with ©f 3(8), respectively. f(-) andF(.) are density and
strictly positive mean represented by the random vari- cumu_latlye cﬁstnbuuon function of the standard nor-
abled(a). We further assume for two distinct aras ~ Mal distribution.
anda’ thatd(a) andd(a’) are independent.
The Stochastic Shortest Path Problem with Delay
Excess Penalty (SSPDpnsists in finding a directed 3 SIMPLIFIED SSPD
path between two given verticesandt such that the
sum of the cost and the expected delay cost is min- In some cases, SSPD can be simplified significantly.
imal. The delay cost is based on a penalty per time Here we introduce one special case, where, for each
unitd > O that has to be paid whenever the total delay arc, the mean and variance of the arc delay is posi-
exceeds a given threshdi> 0. tively proportional to the cost of the arc. For instance,
SSPD can be formulated as a stochastic combina-in a transportation network, it is often the case that the
torial optimization problem in the following way: Let  traffic delay time is proportional to the length of the



road, i.e., the longer the road, the more traffic jams WhenB > 0, we havefg x- fx (x)dx > 0.

and thus the longer the delay. For these graphs, we

can prove that the optimal solution of SSPD is the

As X = =2 we haveE(x) = 0, ie., [%,x-
fx(x)dx=0. WhenB < 0, and asf(x) > 0, we thus

same as the one of its corresponding classic shortesget:

path problem. More precisely, one just needs to de-
termine the path such that the sum of the costs is min-
imized, which can be done in polynomial time. This

can be used to obtain benchmarks for numerical tests.

First, we introduce the following lemma:
Lemma 1. Let Y := Z 0(a)xa, then the objective

function of SSPD is a nondecreasmg function of the
expectation and the variance of Y.

Proof. We suppose that the expectation and the stan-

dard deviation off arepando. LetX = %‘ and we
have:
G(u0) =E[Y - D]"] =E[[cX +u-D]"]

_/_H oX+ p— D) fx (x)dx

0/; X tx (bt (=D) [,

(o2 g

fx (x)dx

wherefx (-) is the probability density function of.

The objective function is nondecreasing fppro-
vided that its partial derivative with respect tois
non-negative:

0G(y,0) D-—u, D—p , -1
T ()= x(—5)(5)
+ [y O (- D) (-1 (=)

:/D;Efx X)dx

Since the density functiofix (x) is non-negative, we
have [, fx(x)dx > 0. ThereforeE[[Y —D]*] is a

nondecc?easing function of
For o, we also prove that the partial derivative
with respect tao is non-negative:

aG “, —/ X fx
+o-<—1>D “fx<D;“><[:2“>
Hu-D) (B
:/;Ll x- fx (x)dx
Lete— 2—H
o
%:/B x- fx (x)dx

0 0
/ x-fx(x)dxg/ X- fx(x)dx< 0=
—00 B

0= E(X) = /j;x e (X)dx+ /Omx- f(x)dx

0 w
g/ X fx(x)dx+/ X- fx (x)dx
B 0

From above, we havgsé‘;—m > 0. ThereforeE[[Y —
D]*] is also a nondecreasing function @f Corre-
spondingly,E[[Y — D]*] is a nondecreasing function
of 62, the variance oY. O

We formulate the following assumptions:

(A1) for each arc, the expectation and variance
of the delay are positively proportional to the cost of
the arc
(A2) for two distinct arcs a and’athe delayd(a) and
delayd(a’) are distributed independently

Remark: there is no need to assume that the delay
d(a) is normally distributed.

Theorem 1. Under assumption (A1) and assumption
(A2), the SSPD is equivalent to the classic shortest
min

path problem
c(a
XG{Oﬁl}IAIa; ( )Xa
s.t. Mx=b

Proof. We suppose that the proportions of the ex-
pectation and the variance to the cost @k > 0
andC2 > 0, respectively. Lelf = Z o(a)xa. As

Xa € {0,1}, i.e., X2 = x4 and given assumpt|on (A2),

we have
—E(T 8(@)%) = T %E(3(a)) =C1 Y c(a)xa
acA acA acA
Var(Y)=Var( ;é(a)xa) = Z\xaVar(é(a))

=C2 Z\c(a)xa

By Lemma 1, we get the conclusion that the problem

min  E[7(x,0)] has the same optimal solution as
xeSc{0,1}IA
min Y c(a)Xa. O

xeSc{0,1}AlacA



4 PROBLEM SOLVING METHOD 4.1.2 Projection and Update ofx

A specific branch-and-bound algorithm for SSPD is At iterationk > 1, let rk := OE[7(X1,8)] be the
introduced in this section. The main idea of the al- estimator of the gradient. Its projection on the null
gorithm is as follows: on the one hand, in order to space oM is done by multiplying it with the projec-
get a lower bound to exclude some subsets of the so-tion matrix TM := I, — MT(MMT)~*M. Then,x is
lution space®, we solve the corresponding relaxed, updated as follows:

i.e., continuous version of SSPD (see subsection 4.1) K kel keM K

with a Stochastic Projected Gradient method. On the Xt =X = p(TH-r)

other hand, instead of introducing a binary search treewhere p* is the step size given by a-sequence
for the branch-and-bound procedure, we directly use (pk)kem[l-

the given graph to brows® (i.e., the set of directed

However, the predefined step sizeémight be too
paths fromstot (see subsection 4.2)). b P sigemig

large in the sense that we can obtain components of

) XX that are negative.

4.1 Solving the Relaxed SSPD In order to handle negative components, we pro-
ceed as follows: LetX be the index set of the strictly

Since the continuous relaxation of SSPD (where negative components of. We then compute the

{0,1}is replaced by € [0,1]/A) is a convex prob-  maximum step size that keeg§ in the feasible re-
lem (see for example (Kosuch and Lisser, 2010)), we gion by

can solve it by using a Stochastic Projected Gradient Xl_kfl
method. The basic idea is as follows: at each iteration ﬁk = mip{ TV K }
k > 1, we first estimate the gradieBkE[7 (X1, 8)] et [ (T
by 34 07 (X¢1,8,) /N (wherext—1 is the feasible ~ and updates accordingly:

solution vector computed in the previous iteration and X = XL _BK(TM k)
d.j=1,...,N, areN samples of the random vec-

tor 6, which are regenerated at theh iteration; see PrOpOSition 1. Let )P be a feasible solution of the re-
subsection 4.1.1). This gradient estimator is projected laxed SSPD. Then, using the update procedure men-
onto the null space of the matri. x¢ is then com- tioned above, % remains feasible for the relaxed
puted as usual, i.ex<"! minus the projected gradi- SSPD forall k> 1.
ent times the step size. In case we obtain negative
components ok, we adapt (i.e., shorten) the step size
(subsection 4.1.2).

The complete algorithm is given in Algorithm 1.
In the following subsections we define the used vari-

Proof. Using the update procedure above,
MxK = M(XL — pK(TM . rky), As T™ =
In — MT(MMT)"IM, we have: Mxk = Mx<1.
So provided thax? is a feasible solutioryixk = b for

. ; - allk> 1.
ables and give further details on the algorithm. By using the step sizg* we assure tha(‘k >0 for
4.1.1 Estimating the Gradient ofj allk={1,..,n}.

DefineA = {ac A|x¥(a) # 0}. First of all remark
- . . that due to constraints (1KY defines a (positive) flow
7 is differentiable everywhere except for those points onG = (V,A) with value 1. AsG contains no directed

X v_vher_e aca8(@)%a — D = 0. The set of all these ._cycles, we can now partitiov in disjunct vertex sets
points is a null set and can thus be neglected as the aim,, V. such that
yeees VK

of all stochastic gradient algorithms is to approximate
the gradient of the expectation gfvia a sampling 1. U, vi=Vv
procedure. Therefore, we define the gradienf afs 2. Vi = {s} andV = {t}

follows: 3. Leta=vwec A. Then there exig, j € {1,...,k}
c if [Sacad(@)Xa—D < 0] with h< j, s.t.ve Vy andw e V.
OxJ (X, 8) = cid.5 otherwise Leta=vwe Aandv € Vi, h < k. Then there exists a
cutCa = UL Vi such tha € E(C,,Ca), denoting the
So the estimator of the gradieB4E[7 (X< 1, 8)] is ze;gf the edges betweéh andCq, andE(Cq,Ca) =
S -
OELT &1, 8)] = S0 OxI (X1, 8) A o-sequence is a sequen¢p)., that satisfies

N liMk_00 P = 0 @Ay o pX — oo



X(Ca,Cq) := Z xw=1 and X;>0vacA
vely
weCy

it follows thatxg < 1. This ends the proof. O

4.1.3 Active Set Methods

However, ifxik’1 =0 for ak > 1 and an index ¢
{1,...,n}, we get the step siz& = 0. In this case, we
are (and will keep) stuck on the current, probably non-
optimal solution. To prevent this, we use thetive
set methodsee (Luenberger and Ye, 2008)), which
introduces a set of additional equality constraints, the
so calledactive set4¥. As this set is continuously
updated, we use a superscript that indicates in which
iteration the sefz¥ is active.

Fork> 1letl§ 1 :={i|x¥“!=0}. Then the active
set for iteratiork is defined as:

A={x=0lielg™

Now, instead of projecting on the null space of the
matrix M, we project it on the null space of a matrix
ZK: This matrix consists of the matriM enlarged by
|Ig’1| rows that correspond to the equality constraints
in 4k:

zZk=wm

k
4 = €k-1(n-i)

where{t“1(1),..., ™ Y152} =15 andg is the
i-th row of the n-dimensional identity matrix. Re-
mark thatZK might have linearly dependent rows.
In this case the projection matrix can be computed
asTK =1 — (ZT(Z¥Z")T)*ZX where (Z)* is the
unique Moore-Penrose pseudoinvers@'of

If the computed projected gradient is zero, we
might have obtained a local optimum of the deter-
ministic variant of problem (1) with delay vectors
5&, j = 1...N and additional equality constraints given
by 4. In this case we compute Lagrange multipliers
as follows:

for i=1,...,n

for i=n+1,....n+[IEY

A= 7(Zk(zk)T)+Zkrk
If all the multipliers associated with the constraints

in 4% are positive, we have reached the optimal solu-
tion of the deterministic variant of problem (1) with

delay vectors_Sﬂ,j = 1...N. In this case we stop the
algorithm. Otherwise, we remove the constraint with
the most negative multiplier from* and start a new
iteration.

Clearly, as the algorithm is stochastic, it might
take some additional time to meet the stopping cri-
terion that multipliers are positive, even though the

Algorithm 1 : Stochastic Projected Gradient Algo-

rithm

e [nitialization: Given constants, K, Ko and ao-
sequencépk)keN. Choose feasible for SSPD
(1) (for example using depth-first search on the
graph). Sek=1. _
For allac AdrawN samplesSﬂ(a),j =1...,N
of d(a) according to its normal distribution.
DetermineZ* and letT be the matrix for projec-
tion on the null space afX. Compute the approx-
imated gradient* := 3, 0x7 (X1, 3)/N.
If TK.rk = 0: Compute the Lagrange multipliers
of the current equality constraints.
— If all multipliers associated with the constraints
in 4X are positive, STOP.
— Else delete the constraint fro having the
most negative associated multiplier. 8et k+
1 and start a new iteration.
Else: Updatex® as follows:xK = x<-1 — pk(Tk.rk)
— If minggy mx€ <0 Define I* = {i|x <
0} and compute a new step sizepk =

. 1
MMk {W}

Updatex® as follows:xX = x<~1 —p*(Tk.rk)

— If k> Ky and[E[7(x¥,8)] —E[7(x K2, 8)]| <€,
STOP.
Otherwise Sek = k+ 1 and start a new itera-
tion.

current solution is (near) optimal. That is why we add
an additional stopping criterion: if there is no signifi-
cant improvement in the objective value, we stop the
algorithm.

4.2 Branch-and-bound Framework

Definition 1. Let P be a directed path. We say that an
arc a= (v,w) has its origin in P, if ve P but ag P.
For a path P we define the set of all arcs that have
their origin on P as Q.

The branch-and-bound algorithm can be stated
as follows: First we solve the relaxed version of
the overall problem, which gives us a solution ~
of the relaxation as well as a first lower bound
LB. We then begin to search for a feasible binary
solution by plunging the graph (see phase 4). The
obtained directed path from stot together with the
corresponding lower boundB(P) = LB are stored
in a pool of waitings-t-pathsZ. In addition, we
store the value ox for all arcsa € Op in a variable
xp(@). The solution value of SSPD given IByis our
first upper bound and it is stored in the variablB.



Then, each further iteration of our branch-and-bound  We considered five directed, acyclic graphs for

algorithm consists of (up to) five phases: our tests with(|V|,|A|) equal to(23,40), (50,167),
(75,215), (100351 and (100,573), respectively.

Phase 1: Selecting a branch Among the five networks, the first is taken from an-

If £ is empty, the algorithm terminates. OutphiiB. other paper (see (Ji, 2005)), while the other four

Otherwise, we select a patR € L such that are modified graphs of the OR-library (see (Beasley,

LB(P) = minge . LB(Q). 2010)).

Phase 2: Selecting an arc 5.1 The Continuous SSPD

If no arc in Op is left that has not already been
examined (i.e., majp(b)|b € Op} = —1, see phase
5), we deleteP from L, end the iteration and go to
phase 1. Otherwise, we go to the first ventean P
such that there still exists at least one arav) € Op
that has not already be examined (i.e., such that
max{xp(b)|3w € A: b= (vw)} # —1). We then
choose the ara such thatxp(a) = max{xp(b)|3w €
A:b=(vw)}. If addinga to the sub-paths-P-v
leads to a non-feasible solution, we reject(i.e.,
setxp(a) = —1) and choose another arc @p by
repeating phase 2.

We compare our Stochastic Projected Gradient
method with Matlab’s optimization toolbox: To solve
the convex, deterministic reformulation of SSPD (2),
we use Matlab’s fmincon function and set, as in our
algorithm, an active set method as optimization algo-
rithm. Note that Matlab uses a deterministic gradient
strategy while we use a stochastic one.

As test instances, we generated the parameters for
the five networks as follows: the penattys 10,D is
set to the mean of the delay of the shortest path, the
expectationu(a) and the variance?(a) are generated
uniformly on the intervalfL, 2¢] (Cis the median of all
the costs) anfb?(c), 4x a2(c)] (o?(c) is the variance
of all the costs), respectively. We run our algorithm
as well as Matlab 10 times on each instance. The re-
, , S sults are shown in Table 1, where we compare our
this subproblem gives us a lower boubB for the  giochastic Projected Gradient method with Matlab's
correspondlng binary solution and a solution vector optimization toolbox in terms of average CPU time in

% If LB < UBwe goto phase 4. Otherwise, we reject seconds and the mean of best solution value found.
a(setxp(a) = —1) and choose a new arc (phase 2). e also give the relative performance ratio computed
as

Phase 3: Calculating a lower bound

Leta = (v,w) be the arc chosen in phase 2. Consider
the relaxed subproblem of SSPD obtained by fixing
the first part of thest-path tos-P-(v,w). Solving

Phase 4: Plunging

Find a new st-path P' containing the sub-path
s-P-(v,w): Starting from vertexv, we always add the
outgoing arc with the highest value xf ~

V — VMatl
PR— SGrad atlab
VsGrad

wherevsgrag is the mean of the best solution values
obtained with the Stochastic Projected Gradient al-
gorithm andvyatiap the mean of the ones obtained
with Matlab. As SSPD is a minimization problem
and both methods give a feasible solution, negative ra-
tios indicate that our algorithm found a better solution
while positive ones show that Matlab performed bet-
ter. To give detailed information about the numerical
. .__tests, we list the percentage of all 10 runs where the
rest of the outgoing arcs, we store the corresponding g4,chastic Projected Gradient algorithm finds a better
component Ok™Xp (VW) is set to—l_. . solution than Matlab’s optimization algorithm. Note
If the solution value of SSPD given by is lower that for the test of graphl00,573), there are 4 runs
than the current upper bouftB, we updatéJ B. out of 10 where Matlab did not finish in 20 minutes.
However, with our method it took at most 140 sec-
onds to get a solution. These instances are omitted in
5 NUMERICAL EXAMPLES the computation of the average values given in Table
1.
The Stochastic Projected Gradient method as well as  From Table 1, we observe that our algorithm is
the branch-and-boundalgorithm were implemented in better than Matlab’s optimization toolbox in terms of
Matlab and all tests ran on a Pentium(R)D @ 3.00 CPU time. Moreover, the CPU time of our algorithm
GHz with 2.0 GB RAM. does not exceed 70% of the CPU time Matlab takes.

Phase 5: Storage and Update

Path P’ is stored together with the corresponding
lower boundLB(P’) = LB in the pool of waiting
pathsZ. In addition, we define for all arca € Op/
the valuexp (a) as follows: For all arcs that have
their origin ons-P-v x(a) is set to—1. For the



(Nodes, Algor. CPU Best PR  Perc- putation load is clearly heavier at each iteration with

Arcs) time(s) Val. (%) entage N =100 than withN = 1. However, recall that the

(23,40) N=1 036 216 18.06 0% stopping criterion is not a fixed number of iterations

(23,40) N=10 042 205 13.66 0% but merely based on a measure of convergence. This

(23,40) N=100 0.40 205 13.66 0% explains, that on some instances the algorithm takes

(23,40) Matlab 1.50 177 - - less time when considering 100 samples per iteration
than when considering only one.

(50,167) N=1 2.72 13135 1788 0%
(50,167) N=10 2.72 13302 18.91 0%
(50,167) N=100 2.78 13155 18.01 0% . ) )
(50,167) Matlab 47.54 10786 - . Inthis section, we present our numerical results of the
above mentioned branch-and-bound algorithm. For
the five networks, we run two cases: in the first
(75,215) N=1 6.62 14461 17.76 30% One, the expectation and the variance of the delay
(75,215) N=10 6.42 14363 17.20 20% are directly proportional to the cost of the arc (in-
(75,215) N=100 6.52 13446 11.55 40% Stances SSPDla - SSPD5a); in the second one, they
(75,215) Matlab 156.60 11893 - . are not proportional to the cost (instances SSPD1b -
SSPD5b). For the first case, by Theorem 1 in section
3, we get the conclusion that the optimal solution of
(100,351) N=1 30.08 7464 -36.90 70% SSPD can be obtained in polynomial time by solving
(100,351) N=10 30.02 7471 -36.77 70% aclassic shortestpath problem. This provides us with
(100,351) N=100 30.34 7488 -36.46 70% & benchmark forthe solution given by our algorithm.
(100,351) Matlab 133.26 10218 - . However, this doesn’t suit to the second case.
Based on the numerical results for the continu-
ous relaxation of SSPD, we set the sample number
(100,573) N=1 129.02 13241 10.90 50% N to 10 for both cases. The other parameters are
(100,573) N=10 138.72 10847 -8.77 83% generated as follows: for the first case, the penalty
(100,573) N=100 140.26 10021 -17.73 100%d (the delay penalty per time unit) is 10, the expec-
(100,573) Matlab 200.70 11798 - - tation and the variance of the delay for each arc
arep(a) = 10« c(a) ando?(a) = pu(a)/9, respectively,
and the delay threshoM is set to the mean of the de-
lay of the shortest path. For the second case, we use
With respect to the produced solutions, for the two the same instances as the continuous SSPD, i.e., the
large graphsr(= 100), the Stochastic Projected Gra- parameters are the same as the parameters in the con-
dient algorithm finds the best solutions, while Matlab tinuous one. In our numerical tests, we run each in-
performs better on the small graphs with<= 75. stance ten times. The results are shown in Table 2 and
Moreover, withN = 100 samples our algorithm pro- Table 3, respectively. For each of the 10 instances,
duces better solutions than Matlab in 81% of the runs Table 2 gives the mean of the solution value obtained
on the graphs with 100 vertices. To resume, for the with the branch-and-bound algorithm, the benchmark
instances above, the Stochastic Projected Gradient al{the optimal value), the average number of considered
gorithm performs better than Matlab’s optimization nodes, i.e., the number of times a lower bound is cal-
toolbox when graph sizes are large, both in terms culated during the algorithm, the average CPU time
of CPU time and produced solutions. For the small in seconds and the gap, i.e., the relative difference be-
graphs, Matlab gives better solutions but takes 3 timestween the solution value of the best solution provided
more CPU time than the Stochastic Projected Gradi- by our algorithm and the benchmark; while Table 3
ent algorithm. gives the mean of the solution value obtained with the
Regarding the number of samplds we observe  branch-and-bound algorithm, the average number of
no big difference between taking 10 samples and 100.considered nodes, the average CPU time in seconds.
However, in general, taking 100 samples gives better ~ From Table 2 and Table 3, we observe that for the
results than taking 1 sample: for instances 1, 3 and first four instances the CPU time of our branch-and-
5, better solutions are found with 100 samples, while bound algorithm does not exceed 400 seconds. Given
the results are comparable for the other two instances.theNP-hardness of the problem, the size of the graphs
Notice that the number of sampléshas no signif- and number of-t-paths (47, 88828, 810631 and up
icant influence on the CPU time, although the com- to more than 276 million for the graph with 100 ver-

5.2 The Combinatorial SSPD

Table 1: Results of solving the Continuous SSPD



tices) the CPU times are very small compared to other Instances  (Nodes,  Best No.of CPU

branch-and-bound approaches (see e.g. (Kosuch and Arcs) Val.  nodes time (s)

Lisser, 2010)). This is of course due to the quite high SSPD1b  (23,40) 250 18 7.00

number of pruned subspaces that can be seen from

the low number of considered nodes (that, on aver-

age, does not exceed 20 for all instances). Although, SSPD2b  (50,167) 16182 16 65.34

due to the approximative nature of the Stochastic Pro-

jected Gradient algorithm, it is theoretically possi-

ble that our branch-and-bound algorithm prunes sub- SSPD3b  (75,215) 15909 15 127.96

spaces that contain an optimal solution, the solutions

we get are optimal for the first case, where the optimal

solutions are known (i.e., all gaps are 0). SSPD4b  (100,351) 9842 13 372.43
Comparing the performance of our algorithm on

the instances of the first case (Table 2) with that on the

instances for the second case (Table 3), we see thatthe SSPD5b  (100,573) 10795 39  5464.30

algorithm considers Sl|ght|y more nodes in the second Table 3: Computational results for instances

case. We think that this is due to the initial plung-

ing that, for instances where the delays are positively = ) )

proportional, produces a "relatively better” solution. 1&ting it as the classic shortest path problem, which

This allows the algorithm to prune even more sub- €an be solved in polynomial time.

spaces. On the other hand, the arverage of caculating  1° SCIve the problem in general we propose to use

of the lower bound, i.e., the ratio between the time and @ Pranch-and-bound framework to search the set of

the nodes, are nearly same for the same graphs Withfeasmle paths. Lower bounds are obtained by solv-

V| > 50 in both cases, the proportional and general ing the corresponding Iingar relgxation Whic_h in turn
case. which indicates a sort of robustness. is done using a Stochastic Projected Gradient algo-

rithm involving an active set method. Numerical ex-
Instances (Nodes, Best Opt. No.of CPU Gap amp!es are giv_en to iIIustrate.the eﬁectivengss of the
Arcs) Val. Val. nodes time (s) (%) obta_lned aIgorlthm.. Concerning the_resolqﬂon of the
SSPD1a (23,40) 41 41 6 154 0,00 continuous relaxation, our Stochastic Projected Gra-
dient algorithm clearly outperforms the Matlab op-
timization toolbox on large graphs. Moreover, for
SSPD2a (50,167) 530 530 5 13.79 0.00 Instances where the cost of an arc is positively pro-
portional to the mean and variance of its delay, our
branch-and-bound algorithm indeed finds the optimal
SSPD3a (75,215) 625 625 15 146.85 0.00 Solution. :
For the future work, we can generalize the as-
sumption on the distribution and our approach should
SSPD4a (100,351) 231 231 9 274.54 0.00 be easily extendable to more general distributions,
and maybe also to more general graphs. Concerning
the special case for which we have shown the Stochas-
SSPD5a (100,573) 110 110 15 2066.30 0.00 tic Shortest Path Problem with Delay Excess Penalty
: : : to be equivalent to the classic shortest path problem, it
;l;sg!ael jélgomputatlonal results for instances with propor- might be possible to weaken the underlying assump-
ys tions in order to obtain this same result for a larger
class of instances.

6 CONCLUSION

In this paper, we study and solve a stochastic version
of the shortest path problem with a penalty for ex-
ceeded delay. The underlying graph is assumed to be
directed and acyclic. We prove that in some cases the
obtained Stochastic Shortest Path Problem with Delay
Excess Penalty can be greatly simplified by reformu-
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