An Ant Colony Optimization Algorithm for the Two-Stage Knapsack Problem

Stefanie Kosuch

Postdoc at the Theoretical Computer Science Lab Linköpings Universitet (Sweden)

Évolution Artificielle 2011 Angers, France, October 24 - 26, 2011

2 The ACO-algorithm

- 2 The ACO-algorithm
- 3 Summary of Numerical Results

- 2 The ACO-algorithm
- 3 Summary of Numerical Results
- 4 Future Work

Outline

1 The Two-Stage Knapsack Problem

2 The ACO-algorithm

- 3 Summary of Numerical Results
- 4 Future Work

■ *c* > 0: Knapsack weight capacity

- *c* > 0: Knapsack weight capacity
- n items

- *c* > 0: Knapsack weight capacity
- *n* items
- $r_i > 0$: reward of item *i*

- *c* > 0: Knapsack weight capacity
- *n* items
- $r_i > 0$: reward of item *i*
- w_i: weight of item i

- *c* > 0: Knapsack weight capacity
- *n* items
- $r_i > 0$: reward of item *i*
- w_i: weight of item i

Objective

Maximize the total reward of chosen items whose total weight respect knapsack capacity.

- *c* > 0: Knapsack weight capacity
- *n* items
- $r_i > 0$: reward of item *i*
- w_i: weight of item i

Objective

Maximize the total reward of chosen items whose total weight respect knapsack capacity.

Applications

Logistics - Resource allocation - Scheduling - Network Optimization etc.

The Stochastic Knapsack Problem with Random Weights

- *c* > 0: Knapsack weight capacity
- *n* items
- $r_i > 0$: reward of item *i*
- χ_i : random weight of item *i*

Objective

Maximize the total reward of chosen items whose total weight respect knapsack capacity.

The Stochastic Knapsack Problem with Random Weights

- *c* > 0: Knapsack weight capacity
- *n* items
- $r_i > 0$: reward of item *i*
- *χ_i*: random weight of item *i* weight unknown when decision has to be made

Objective

Maximize the total reward of chosen items whose total weight respect knapsack capacity.

The Stochastic Knapsack Problem with Random Weights

- *c* > 0: Knapsack weight capacity
- *n* items
- $r_i > 0$: reward of item *i*
- *χ_i*: random weight of item *i* weight unknown when decision has to be made

Objective

Maximize the total reward of chosen items whose total weight respect knapsack capacity.

Question

How to handle the fact that chosen items might not respect knapsack capacity?

First stage: items can be put in the knapsack

- First stage: items can be put in the knapsack
- \blacksquare First stage \longleftrightarrow second stage: item weights are revealed

- First stage: items can be put in the knapsack
- First stage \longleftrightarrow second stage: item weights are revealed
- Second stage: The decision can/has to be corrected

- First stage: items can be put in the knapsack
- \blacksquare First stage \longleftrightarrow second stage: item weights are revealed
- Second stage: Items

 ...have to be removed in case of an overweight
 ...can be added if capacity sufficient
 ...can be exchanged to increase gain.

- First stage: items can be put in the knapsack
- First stage \longleftrightarrow second stage: item weights are revealed
- Second stage: Items
 - ...have to be removed in case of an overweight
 - ... can be added if capacity sufficient
 - ...can be exchanged to increase gain.
- Correction of the decision causes penalty

- First stage: items can be put in the knapsack
- First stage \longleftrightarrow second stage: item weights are revealed
- Second stage: Items

 ...have to be removed in case of an overweight
 ...can be added if capacity sufficient
 ...can be exchanged to increase gain.

 Correction of the decision causes penalty

Assumption: Discretely distributed weights

- First stage: items can be put in the knapsack
- First stage \longleftrightarrow second stage: item weights are revealed
- Second stage: Items

 ...have to be removed in case of an overweight
 ...can be added if capacity sufficient
 ...can be exchanged to increase gain.

 Correction of the decision causes penalty

Assumption: Discretely distributed weights

K scenarios

- First stage: items can be put in the knapsack
- First stage \longleftrightarrow second stage: item weights are revealed
- Second stage: Items
 ...have to be removed in case of an overweight
 ...can be added if capacity sufficient
 ...can be exchanged to increase gain.
- Correction of the decision causes penalty

Assumption: Discretely distributed weights

- K scenarios
- K realizations χ^1, \ldots, χ^K

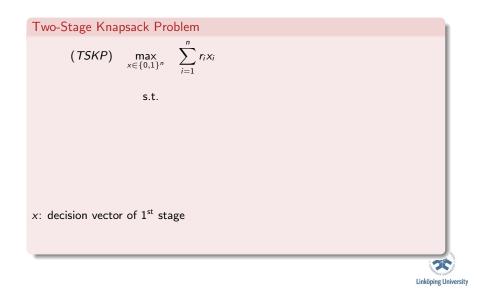
- First stage: items can be put in the knapsack
- First stage \longleftrightarrow second stage: item weights are revealed
- Second stage: Items

 ...have to be removed in case of an overweight
 ...can be added if capacity sufficient
 ...can be exchanged to increase gain.
- Correction of the decision causes penalty

Assumption: Discretely distributed weights

- K scenarios
- K realizations χ^1, \ldots, χ^K

$$\blacksquare \mathbb{P}\{\chi = \chi^k\} = p^k$$



Two-Stage Knapsack Problem $(TSKP) \max_{x \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$ s.t. $\mathcal{Q}(\mathbf{x}, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0, 1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$ x: decision vector of 1^{st} stage y^+, y^- : decision vectors of 2nd stage (recourse action) $\overline{\mathbf{r}}_{i} < \mathbf{r}_{i}, \ \mathbf{d}_{i} > \mathbf{r}_{i}$

Two-Stage Knapsack Problem $(TSKP) \max_{x \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$ s.t. $\mathcal{Q}(\mathbf{x}, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0, 1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$ x: decision vector of 1^{st} stage y^+, y^- : decision vectors of 2nd stage (recourse action) $\overline{\mathbf{r}}_i < \mathbf{r}_i, \ \mathbf{d}_i > \mathbf{r}_i$

Two-Stage Knapsack Problem $(TSKP) \max_{x \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$ s.t. $\mathcal{Q}(\mathbf{x}, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0, 1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$ x: decision vector of 1^{st} stage y^+, y^- : decision vectors of 2nd stage (recourse action) $\overline{\mathbf{r}}_{i} < \mathbf{r}_{i}, \mathbf{d}_{i} > \mathbf{r}_{i}$

Two-Stage Knapsack Problem $(TSKP) \max_{x \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$ s.t. $\mathcal{Q}(\mathbf{x}, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0, 1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$ x: decision vector of 1^{st} stage y^+, y^- : decision vectors of 2nd stage (recourse action) $\overline{\mathbf{r}}_{i} < \mathbf{r}_{i}, \ \mathbf{d}_{i} > \mathbf{r}_{i}$

$$TSKP) \max_{x \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$$

s.t. $\mathcal{Q}(x, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{r}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$
s.t. $y_j^+ \le 1 - x_j, \quad j = 1, \dots, n,$
 $y_j^- \le x_j, \quad j = 1, \dots, n,$

x: decision vector of 1^{st} stage y^+, y^- : decision vectors of 2^{nd} stage (recourse action) $\bar{r}_i < r_i, \ d_i > r_i$

$$(TSKP) \max_{x \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$$

s.t. $\mathcal{Q}(x, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \bar{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$
s.t. $y_j^+ \le 1 - x_j, \quad j = 1, \dots, n,$
 $y_j^- \le x_j, \quad j = 1, \dots, n,$
 $\sum_{i=1}^n (x_i + y_i^+ - y_i^-) \chi_i \le c.$

x: decision vector of 1^{st} stage y^+, y^- : decision vectors of 2^{nd} stage (recourse action) $\bar{r}_i < r_i, \ d_i > r_i$

$$(TSKP) \max_{x \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$$

s.t. $\mathcal{Q}(x, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \bar{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$
s.t. $y_j^+ \le 1 - x_j, \quad j = 1, \dots, n,$
 $y_j^- \le x_j, \quad j = 1, \dots, n,$
 $\sum_{i=1}^n (x_i + y_i^+ - y_i^-) \chi_i \le c.$

x: decision vector of 1^{st} stage y^+, y^- : decision vectors of 2^{nd} stage (recourse action) $\bar{r}_i < r_i, \ d_i > r_i$

$$(TSKP) \max_{x \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \sum_{k=1}^K \mathbf{p}^k \mathcal{Q}(\mathbf{x}, \chi^k)$$

s.t. $\mathcal{Q}(\mathbf{x}, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \bar{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$
s.t. $y_j^+ \le 1 - x_j, \quad j = 1, \dots, n,$
 $y_j^- \le x_j, \quad j = 1, \dots, n,$
 $\sum_{i=1}^n (x_i + y_i^+ - y_i^-) \chi_i \le c.$

x: decision vector of 1^{st} stage y^+, y^- : decision vectors of 2^{nd} stage (recourse action) $\bar{r}_i < r_i, \ d_i > r_i$

Outline

1 The Two-Stage Knapsack Problem

2 The ACO-algorithm

3 Summary of Numerical Results

4 Future Work

Natural idea: try metaheuristics!

But why an ACO-metaheuristic?

But why an ACO-metaheuristic?

Possibility to use heuristic utility measures

But why an ACO-metaheuristic?

- Possibility to use heuristic utility measures
- Construction of solution → **no evaluation**

ACO-algorithm

But why an ACO-metaheuristic?

- Possibility to use heuristic utility measures
- Construction of solution \rightarrow **no evaluation**
- Obj. func. evaluation \leftarrow comparison

Two-Stage Knapsack Problem

$$(TSKP) \max_{x \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \sum_{k=1}^K \mathbf{p}^k \mathcal{Q}(\mathbf{x}, \chi^k)$$

s.t. $\mathcal{Q}(x, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{r}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$
s.t. $y_j^+ \le 1 - x_j, \quad j = 1, \dots, n,$
 $y_j^- \le x_j, \quad j = 1, \dots, n,$
 $\sum_{i=1}^n (x_i + y_i^+ - y_i^-) \chi_i \le c.$

x: decision vector of 1^{st} stage y^+, y^- : decision vectors of 2^{nd} stage (recourse action) $\bar{r}_i < r_i, \ d_i > r_i$

Linköping University

ACO-algorithm

The search graph

Complete directed search graph: *n* vertices $\simeq n$ items

ACO-algorithm

- **Complete directed** search graph: n vertices $\simeq n$ items
- Pheromone laid on arcs (directed edges)

- **Complete directed** search graph: n vertices $\simeq n$ items
- Pheromone laid on arcs (directed edges)
- Add starting vertex

- **Complete directed** search graph: n vertices $\simeq n$ items
- Pheromone laid on arcs (directed edges)
- Add starting vertex
- Add termination vertex

• 4 factors to be considered:

- 4 factors to be considered:
 - item weight
 - first-stage reward
 - second-stage reward
 - second-stage penalty

- 4 factors to be considered:
 - item weight
 - first-stage reward
 - second-stage reward
 - second-stage penalty
- K different weights per item

- 4 factors to be considered:
 - item weight
 - first-stage reward
 - second-stage reward
 - second-stage penalty
- *K* different weights per item
- no "natural" certificate for termination

- 4 factors to be considered:
 - item weight
 - first-stage reward
 - second-stage reward
 - second-stage penalty
- K different weights per item
- no "natural" certificate for termination
- utility measure for termination vertex \rightarrow via non-utility measure

 \mathcal{K}_i : set of scenarios where item *i* still fits

• Simple utility measure $(i \in \{1, \ldots, n\})$:

$$\eta_i^{S} = \sum_{k \in \mathcal{K}_i} p^k \frac{r_i}{\chi_i^k}$$

viversity

 \mathcal{K}_i : set of scenarios where item *i* still fits

Simple utility measure $(i \in \{1, \ldots, n\})$:

$$\eta_i^S = \sum_{k \in \mathcal{K}_i} p^k \frac{r_i}{\chi_i^k}$$

Simple non-utility measure ($i \in \{1, \ldots, n\}$):

$$\nu_i^S = \sum_{k \notin \mathcal{K}_i} p^k \frac{d_i}{\chi_i^k} \qquad \nu_i^S = \sum_{k=1}^{\mathcal{K}} p^k \frac{\overline{r}_i}{\chi_i^k}$$

viversity

 \mathcal{K}_i : set of scenarios where item *i* still fits

• Simple utility measure $(i \in \{1, \ldots, n\})$:

$$\eta_i^{S} = \sum_{k \in \mathcal{K}_i} p^k \frac{r_i}{\chi_i^k}$$

Simple non-utility measure ($i \in \{1, \ldots, n\}$):

$$\nu_i^{S} = \sum_{k \notin \mathcal{K}_i} p^k \frac{d_i}{\chi_i^k} \qquad \nu_i^{S} = \sum_{k=1}^{\mathcal{K}} p^k \frac{\overline{r}_i}{\chi_i^k}$$

Utility of termination:

$$\eta_{n+1}^{S} = \min_{i \in \{1, \dots, n\}} \nu_i^{S}$$

viversity

 \mathcal{K}_i : set of scenarios where item *i* still fits

• Difference utility measure ($i \in \{1, \ldots, n\}$):

$$\eta_i^D = \sum_{k \in \mathcal{K}_i} p^k \frac{r_i - \overline{r}_i}{\chi_i^k}$$

 \mathcal{K}_i : set of scenarios where item *i* still fits

• Difference utility measure $(i \in \{1, \ldots, n\})$:

$$\eta_i^D = \sum_{k \in \mathcal{K}_i} p^k \frac{r_i - \overline{r}_i}{\chi_i^k}$$

• Difference non-utility measure ($i \in \{1, \ldots, n\}$):

$$\nu_i^D = \sum_{k \notin \mathcal{K}_i} p^k \frac{d_i - r_i}{\chi_i^k}$$

 \mathcal{K}_i : set of scenarios where item *i* still fits

• Difference utility measure ($i \in \{1, \ldots, n\}$):

$$\eta_i^D = \sum_{k \in \mathcal{K}_i} p^k \frac{r_i - \overline{r}_i}{\chi_i^k}$$

• Difference non-utility measure ($i \in \{1, \ldots, n\}$):

$$\nu_i^D = \sum_{k \notin \mathcal{K}_i} p^k \frac{d_i - r_i}{\chi_i^k}$$

Utility of termination:

$$\eta_{n+1}^D = \min_{i \in \{1, \dots, n\}} \nu_i^D$$

----- oniversity

Outline

- 1 The Two-Stage Knapsack Problem
- 2 The ACO-algorithm
- 3 Summary of Numerical Results
- 4 Future Work

n
$$\in$$
 {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance
- hard instances (CPLEX > 2h)

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance
- hard instances (CPLEX > 2h)

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance
- hard instances (CPLEX > 2h)

Observations n = 100

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance
- hard instances (CPLEX > 2h)

Observations n = 100

Difference measure "outperforms" Simple measure

Numerical results

	Difference measure			Simple measure		
n-K-t	Succesf.	Av.	Time	Succesf.	Av.	Time
	runs	gap	(s)	runs	gap	(s)
100-5-0.25	57 %	0.02 %	35	13 %	0.05 %	30
100-5-0.5	28 %	0.01 %	57	1 %	0.03 %	52
100-5-0.75	1 %	0.02 %	69	0 %	0.02 %	71
100-10-0.25	93 %	0.06 %	47	63 %	0.01 %	34
100-10-0.5	23 %	0.01 %	72	0 %	0.03 %	63
100-10-0.75	15 %	0.02 %	85	0 %	0.04 %	85
100-30-0.25	58 %	0.02 %	147	0 %	0.12 %	107
100-30-0.5	63 %	0.01 %	232	8 %	0.02 %	179
100-30-0.75	25 %	0.01 %	295	0 %	0.03 %	183
250-30-0.25	0 %	0.04 %	414	N/T	N/T	N/T
250-30-0.5	0 %	0.06 %	592	N/T	N/T	N/T
250-30-0.75	0 %	0.06 %	835	N/T	N/T	N/T

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance
- hard instances (CPLEX > 2h)

Observations n = 100

Difference measure "outperforms" Simple measure

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance
- hard instances (CPLEX > 2h)

Observations n = 100

- Difference measure "outperforms" Simple measure
- Very small average gaps ($\sim 0.02\%$)

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance
- hard instances (CPLEX > 2h)

- Difference measure "outperforms" Simple measure
- Very small average gaps (~ 0.02%)
- Relative performance to CPLEX increases with K

Numerical results

	Difference measure			Simple measure		
n-K-t	Succesf.	Av.	Time	Succesf.	Av.	Time
	runs	gap	(s)	runs	gap	(s)
100-5-0.25	57 %	0.02 %	35	13 %	0.05 %	30
100-5-0.5	28 %	0.01 %	57	1 %	0.03 %	52
100-5-0.75	1 %	0.02 %	69	0 %	0.02 %	71
100-10-0.25	93 %	0.06 %	47	63 %	0.01 %	34
100-10-0.5	23 %	0.01 %	72	0 %	0.03 %	63
100-10-0.75	15 %	0.02 %	85	0 %	0.04 %	85
100-30-0.25	58 %	0.02 %	147	0 %	0.12 %	107
100-30-0.5	63 %	0.01 %	232	8 %	0.02 %	179
100-30-0.75	25 %	0.01 %	295	0 %	0.03 %	183
250-30-0.25	0 %	0.04 %	414	N/T	N/T	N/T
250-30-0.5	0 %	0.06 %	592	N/T	N/T	N/T
250-30-0.75	0 %	0.06 %	835	N/T	N/T	Ninköping Unive

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance
- hard instances (CPLEX > 2h)

- Difference measure "outperforms" Simple measure
- Very small average gaps (~ 0.02%)
- Relative performance to CPLEX increases with K

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance
- hard instances (CPLEX > 2h)

- Difference measure "outperforms" Simple measure
- Very small average gaps ($\sim 0.02\%$)
- Relative performance to CPLEX increases with K
- Average Time < 1min (< 1.5min, < 5min)

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance
- hard instances (CPLEX > 2h)

- Difference measure "outperforms" Simple measure
- Very small average gaps ($\sim 0.02\%$)
- Relative performance to CPLEX increases with K
- Average Time < 1min (< 1.5min, < 5min)

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance
- hard instances (CPLEX > 2h)

Observations n = 100

- Difference measure "outperforms" Simple measure
- Very small average gaps (~ 0.02%)
- Relative performance to CPLEX increases with K
- Average Time < 1min (< 1.5min, < 5min)

Observations n = 250

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance
- hard instances (CPLEX > 2h)

Observations n = 100

- Difference measure "outperforms" Simple measure
- Very small average gaps (~ 0.02%)
- Relative performance to CPLEX increases with K
- Average Time < 1min (< 1.5min, < 5min)

Observations n = 250

■ Still small average gaps (≤ 0.06%)

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance
- hard instances (CPLEX > 2h)

Observations n = 100

- Difference measure "outperforms" Simple measure
- Very small average gaps (~ 0.02%)
- Relative performance to CPLEX increases with K
- Average Time < 1min (< 1.5min, < 5min)

Observations n = 250

- Still small average gaps (≤ 0.06%)
- None of instances "solved"

- **n** \in {100, 250}, $K \in$ {5, 10, 30}, $t \in$ {0.25, 0.5, 0.75}
- 36 instances, 50 runs per instance
- hard instances (CPLEX > 2h)

Observations n = 100

- Difference measure "outperforms" Simple measure
- Very small average gaps ($\sim 0.02\%$)
- Relative performance to CPLEX increases with K
- Average Time < 1min (< 1.5min, < 5min)

Observations n = 250

- Still small average gaps (≤ 0.06%)
- None of instances "solved"
- Ratio Running time/n increases slightly

Outline

- 1 The Two-Stage Knapsack Problem
- 2 The ACO-algorithm
- 3 Summary of Numerical Results
- 4 Future Work

Improve utility measure for higher n

- Improve utility measure for higher n
- Consider sampling for higher K

- Improve utility measure for higher n
- Consider sampling for higher K
- Consider using approximate knapsack algorithm for higher *n*

- Improve utility measure for higher n
- Consider sampling for higher K
- Consider using approximate knapsack algorithm for higher *n*
- Comparison with other metaheuristics

Thank you!

:-)

Merci!

