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Approximability of the TSKP

The TSKP

The Deterministic Knapsack Problem

with Random Weights

c > 0: Knapsack weight capacity

n items

ri > 0: reward of item i

wi : weight of item i

weight unknown when decision has to be made

Objective

Maximize the total reward of chosen items whose total weight respect
knapsack capacity.

Applications

Logistics - Resource allocation - Scheduling - Network
Optimization etc.
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Approximability of the TSKP

The TSKP

The Stochastic Knapsack Problem with Random Weights

c > 0: Knapsack weight capacity

n items

ri > 0: reward of item i

χi : random weight of item i
weight unknown when decision has to be made

Objective

Maximize the total reward of chosen items whose total weight respect
knapsack capacity.

Question

How to handle the fact that chosen items might not respect
knapsack capacity?
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Approximability of the TSKP

The TSKP

$4-8 12-15 kg

$2-6 2-3 kg

$1-2 1-4 kg

$2-5 1-3 kg

$10-15 4-7 kg

?
15 kg
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Approximability of the TSKP

The TSKP

Two-Stage Setting

First stage: items can be put in the knapsack

First stage ←→ second stage: item weights are revealed

Second stage: The decision can/has to be corrected

Correction of the decision causes penalty

Assumption: Discretely distributed weights

K scenarios

K realizations χ1, . . . , χK

P{χ = χk} = pk

Stefanie Kosuch Approximability of the TSKP 6/26



Approximability of the TSKP

The TSKP

Two-Stage Setting

First stage: items can be put in the knapsack

First stage ←→ second stage: item weights are revealed

Second stage: The decision can/has to be corrected

Correction of the decision causes penalty

Assumption: Discretely distributed weights

K scenarios

K realizations χ1, . . . , χK

P{χ = χk} = pk

Stefanie Kosuch Approximability of the TSKP 6/26



Approximability of the TSKP

The TSKP

Two-Stage Setting

First stage: items can be put in the knapsack

First stage ←→ second stage: item weights are revealed

Second stage: The decision can/has to be corrected

Correction of the decision causes penalty

Assumption: Discretely distributed weights

K scenarios

K realizations χ1, . . . , χK

P{χ = χk} = pk

Stefanie Kosuch Approximability of the TSKP 6/26



Approximability of the TSKP

The TSKP

Two-Stage Setting

First stage: items can be put in the knapsack

First stage ←→ second stage: item weights are revealed

Second stage: The decision can/has to be corrected

Correction of the decision causes penalty

Assumption: Discretely distributed weights

K scenarios

K realizations χ1, . . . , χK

P{χ = χk} = pk

Stefanie Kosuch Approximability of the TSKP 6/26



Approximability of the TSKP

The TSKP

Two-Stage Setting
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Approximability of the TSKP

The TSKP

Application: Travel Agency

Knapsack ' Hotel Complex

Weight capacity ' Total number of beds

Items ' Travel groups

Item weights ' Group size

Randomness e.g., cancellations

Agency allows overbooking

Number of beds insufficient

→ groups have to be relocated in other hotels

Vacant beds filled with last minute offers
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Approximability of the TSKP

The TSKP

Two-Stage Knapsack Problem

(TSKP) max
x∈{0,1}n

n∑
i=1

rixi

+E[Q(x, χ)]

s.t.

Q(x , χ) = max
y+,y−∈{0,1}n

n∑
i=1

riy
+
i −

n∑
i=1

diy
−
i ,

s.t. y+
j ≤ 1− xj , j = 1, . . . , n,

y−j ≤ xj , j = 1, . . . , n,
n∑

i=1

(xi + y+
i − y−i )χi ≤ c.

x : decision vector of 1st stage
y+, y−: decision vectors of 2nd stage (recourse action)
ri < ri, di > ri
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Approximability of the TSKP

The TSKP

Deterministic Equivalent Two-Stage Knapsack Problem

(TSKD) max
n∑

i=1

rixi +
K∑

k=1

pk

(
n∑

i=1

r i (y
+)k

i −
n∑

i=1

di (y
−)k

i

)
s.t. (y+)k

j ≤ 1− xj j = 1, . . . , n, k = 1, . . . ,K,

(y−)k
j ≤ xj j = 1, . . . , n, k = 1, . . . ,K,

n∑
i=1

(xi + (y+)k
i − (y−)k

i )χ
k
i ≤ c k = 1, . . . ,K,

x ∈ {0, 1}n,

(y+)k, (y−)k ∈ {0, 1}n k = 1, . . . ,K.

x : decision vector of 1st stage
(y+)k , (y−)k : decision vectors in scenario k
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Approximability of the TSKP

The TSKP

Deterministic Reformulation...

...has linear objective and constraints.

...has (2n + 1)K constraints.

...has (2K + 1)n binary decision variables.

...can have ”exponential size”.

...in general intractable with exact solvers.
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Approximability of the TSKP

The TSKP

Published and Working Papers treating the TSKD

R. Lopez (2009): Stochastic Quadratic Knapsack Problems and
Semidefinite Programming, Thesis at the LRI, Université Paris Sud,
France

A. Gaivoronski, A. Lisser, R. Lopez and X. Hu (2010): Knapsack problem
with probability constraints, Journal of Global Optimization 49(3)

S. Kosuch (2011): Towards an Ant Colony Optimization algorithm for
the Two-Stage Knapsack problem, Proc. of the VII. ALIO/EURO
Workshop on Applied Combinatorial Optimization
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Theorem (Z. Li’ang & Z. Yin, 1999)

For any ε > 0, the multiply-constrained knapsack problem does not admit
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Reformulate an instance of AddTSKD via an instance of TSKD (idea)

Given instance I = (r , r , p,w , c) of AddTSKD .

Construct instance I ′ = (r , r , d , p,w , c) of TSKD s.t.

(x∗, (y+)∗, (y−)∗) optimal for I ′ =⇒ (y−)∗ = 0

Idea: Choose di (i = 1, . . . , n) large enough!
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(x∗, (y+)∗) optimal for I ′ =⇒ (y+)∗ = 0
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+ → r i = 1
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(Simple) Approximation Algorithms for special cases

The TSKP with linearly dependent first- and second-stage
reward vectors

Lemma

Let α ∈ (0, 1) and denote TSKP(α, ·) the variant of the TSKP such that
r = α · r . Then there exists an approximation algorithm for the
TSKP(α, ·) with approximation ratio α.

Algorithm

Add no item in the first stage.
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reward vectors

Lemma

Let α ∈ (0, 1) and denote TSKP(α, ·) the variant of the TSKP such that
r = α · r . Then there exists an approximation algorithm for the
TSKP(α, ·) with approximation ratio α.

Proposition (Genaralisation of the lemma)

For any instance of the TSKP define α := mini=1...,n
r i
ri

. Then adding no
items in the first stage always yields a solution whose solution value is at
least an α-fraction of the optimal solution value.
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Approximability of the TSKP

(Simple) Approximation Algorithms for special cases

The TSKP under the assumption of a polynomial scenario
model

Proposition

Under the assumption of a polynomial scenario model, the TSKP admits
a 1

n -approximation algorithm.

Algorithm

Determine the item that gives us the highest expected reward when
added all alone (in first- or second stage).

Corollary

If the item weights are independently distributed with polynomial number
of realizations, the TSKP admits a 1

n -approximation algorithm.
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The AddTSKP under the assumption of a fix number of
scenarios

Proposition

For all ε > 0, there exists an approximation algorithm for the
K − AddTSKP with approximation-ratio 1

2 − ε.

Algorithm

Solve the MCKP (r ,w , c) with PTAS .

∀k , solve KP (r ,wk , c) with FPTAS .

Either output solution of former, or 0.

Stefanie Kosuch Approximability of the TSKP 22/26



Approximability of the TSKP

(Simple) Approximation Algorithms for special cases

The AddTSKP under the assumption of a fix number of
scenarios

Proposition

For all ε > 0, there exists an approximation algorithm for the
K − AddTSKP with approximation-ratio 1

2 − ε.

Algorithm

Solve the MCKP (r ,w , c) with PTAS .

∀k , solve KP (r ,wk , c) with FPTAS .

Either output solution of former, or 0.

Stefanie Kosuch Approximability of the TSKP 22/26



Approximability of the TSKP

(Simple) Approximation Algorithms for special cases

The AddTSKP under the assumption of a fix number of
scenarios

Proposition

For all ε > 0, there exists an approximation algorithm for the
K − AddTSKP with approximation-ratio 1

2 − ε.

Algorithm

Solve the MCKP (r ,w , c) with PTAS .

∀k , solve KP (r ,wk , c) with FPTAS .

Either output solution of former, or 0.

Stefanie Kosuch Approximability of the TSKP 22/26



Approximability of the TSKP

(Simple) Approximation Algorithms for special cases

The AddTSKP under the assumption of a fix number of
scenarios

Proposition

For all ε > 0, there exists an approximation algorithm for the
K − AddTSKP with approximation-ratio 1

2 − ε.

Algorithm

Solve the MCKP (r ,w , c) with PTAS .

∀k , solve KP (r ,wk , c) with FPTAS .

Either output solution of former, or 0.

Stefanie Kosuch Approximability of the TSKP 22/26



Approximability of the TSKP

(Simple) Approximation Algorithms for special cases

The AddTSKP under the assumption of a fix number of
scenarios

Proposition

For all ε > 0, there exists an approximation algorithm for the
K − AddTSKP with approximation-ratio 1

2 − ε.

Algorithm

Solve the MCKP (r ,w , c) with PTAS .

∀k , solve KP (r ,wk , c) with FPTAS .

Either output solution of former, or 0.

Stefanie Kosuch Approximability of the TSKP 22/26



Approximability of the TSKP

(Simple) Approximation Algorithms for special cases

The AddTSKP under the assumption of a fix number of
scenarios

Proposition

For all ε > 0, there exists an approximation algorithm for the
K − AddTSKP with approximation-ratio 1

2 − ε.

Algorithm

Solve the MCKP (r ,w , c) with PTAS .

∀k , solve KP (r ,wk , c) with FPTAS .

Either output solution of former, or 0.

Stefanie Kosuch Approximability of the TSKP 22/26



Approximability of the TSKP

(Simple) Approximation Algorithms for special cases

The AddTSKP under the assumption of a fix number of
scenarios

Proposition

For all ε > 0, there exists an approximation algorithm for the
K − AddTSKP with approximation-ratio 1

2 − ε.

Algorithm

Solve the MCKP (r ,w , c) with PTAS .

∀k , solve KP (r ,wk , c) with FPTAS .

Either output solution of former, or 0.

Stefanie Kosuch Approximability of the TSKP 22/26



Approximability of the TSKP

Conclusion

Outline

1 The Two-Stage Knapsack Problem

2 Non-approximability Result

3 (Simple) Approximation Algorithms for special cases

4 Conclusion

Stefanie Kosuch Approximability of the TSKP 23/26



Approximability of the TSKP

Conclusion

Recapitulation: Two-Stage Knapsack Problem with discrete distribution

TSKD cannot be approximated in polynomial time within a ratio
better than K−

1
2 (unless P = NP).

Reduction from the multiply constrained knapsack problem

Approximation algorithms for special cases:

→ Linear dependency first- and second-stage rewards
→ Polynomial scenario model
→ Fixed number of scenarios (K − AddTSKP)
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PTAS for K − (Add)TSKP
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Approximation in case of continuous distributions
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Conclusion

Thank you!

:-)

Grazie!
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