Approximability of the Two-Stage Knapsack problem with discretely distributed weights

Stefanie Kosuch

Postdoc Technical Computer Science Lab Linköpings Universitet (Sweden)

10-th Cologne-Twente Workshop on graphs and combinatorial optimization *Rom, Italy, June 14 - 16, 2011*

- 1 The Two-Stage Knapsack Problem
- 2 Non-approximability Result

- 1 The Two-Stage Knapsack Problem
- 2 Non-approximability Result
- 3 (Simple) Approximation Algorithms for special cases

- 1 The Two-Stage Knapsack Problem
- 2 Non-approximability Result
- 3 (Simple) Approximation Algorithms for special cases
- 4 Conclusion

Outline

- 1 The Two-Stage Knapsack Problem
- 2 Non-approximability Result
- 3 (Simple) Approximation Algorithms for special cases
- 4 Conclusion

The Deterministic Knapsack Problem

- c > 0: Knapsack weight capacity
- \blacksquare n items
- $r_i > 0$: reward of item i
- \mathbf{w}_i : weight of item i

Objective

Maximize the total reward of chosen items whose total weight respect knapsack capacity.

Applications

Logistics - Resource allocation - Scheduling - Network Optimization etc.

Linköping University

The Stochastic Knapsack Problem with Random Weights

- c > 0: Knapsack weight capacity
- \blacksquare n items
- $r_i > 0$: reward of item i
- **•** χ_i : random weight of item i

Objective

Maximize the total reward of chosen items whose total weight respect knapsack capacity.

The Stochastic Knapsack Problem with Random Weights

- c > 0: Knapsack weight capacity
- \blacksquare *n* items
- $r_i > 0$: reward of item i
- χ_i: random weight of item i weight unknown when decision has to be made

Objective

Maximize the total reward of chosen items whose total weight respect knapsack capacity.

The Stochastic Knapsack Problem with Random Weights

- c > 0: Knapsack weight capacity
- \blacksquare n items
- $r_i > 0$: reward of item i
- χ_i: random weight of item i weight unknown when decision has to be made

Objective

Maximize the total reward of chosen items whose total weight respect knapsack capacity.

Question

How to handle the fact that chosen items might not respect knapsack capacity?

Linköping University

■ First stage: items can be put in the knapsack

- First stage: items can be put in the knapsack
- First stage → second stage: item weights are revealed

- First stage: items can be put in the knapsack
- lacktriangle First stage \longleftrightarrow second stage: item weights are revealed
- Second stage: The decision can/has to be corrected

- First stage: items can be put in the knapsack
- First stage → second stage: item weights are revealed
- Second stage: Items
 - ...have to be removed in case of an overweight
 - ...can be added if capacity sufficient
 - ...can be exchanged to increase gain.

- First stage: items can be put in the knapsack
- First stage → second stage: item weights are revealed
- Second stage: Items
 - ...have to be removed in case of an overweight
 - ...can be added if capacity sufficient
 - ...can be exchanged to increase gain.
- Correction of the decision causes penalty

- First stage: items can be put in the knapsack
- First stage → second stage: item weights are revealed
- Second stage: Items
 - ...have to be removed in case of an overweight
 - ...can be added if capacity sufficient
 - ...can be exchanged to increase gain.
- Correction of the decision causes penalty

Assumption: Discretely distributed weights

- First stage: items can be put in the knapsack
- First stage ←→ second stage: item weights are revealed
- Second stage: Items
 - ...have to be removed in case of an overweight
 - ...can be added if capacity sufficient
 - ...can be exchanged to increase gain.
- Correction of the decision causes penalty

Assumption: Discretely distributed weights

K scenarios

- First stage: items can be put in the knapsack
- First stage ←→ second stage: item weights are revealed
- Second stage: Items
 - ...have to be removed in case of an overweight
 - ...can be added if capacity sufficient
 - ...can be exchanged to increase gain.
- Correction of the decision causes penalty

Assumption: Discretely distributed weights

- K scenarios
- K realizations χ^1, \dots, χ^K

- First stage: items can be put in the knapsack
- First stage → second stage: item weights are revealed
- Second stage: Items
 - ...have to be removed in case of an overweight
 - ...can be added if capacity sufficient
 - ...can be exchanged to increase gain.
- Correction of the decision causes penalty

Assumption: Discretely distributed weights

- K scenarios
- \blacksquare K realizations χ^1, \ldots, χ^K
- $\blacksquare \mathbb{P}\{\chi = \chi^k\} = p^k$

Stefanie Kosuch

- lacksquare Knapsack \simeq Hotel Complex
- lacktriangle Weight capacity \simeq Total number of beds
- Items \simeq Travel groups
- lacktriangle Item weights \simeq Group size

- lacksquare Knapsack \simeq Hotel Complex
- lacktriangle Weight capacity \simeq Total number of beds
- Items \simeq Travel groups
- Item weights \simeq Group size
- Randomness e.g., cancellations

- $lue{}$ Knapsack \simeq Hotel Complex
- lacktriangle Weight capacity \simeq Total number of beds
- Items \simeq Travel groups
- Item weights ≃ Group size
- Randomness e.g., cancellations
- Agency allows overbooking

- $lue{}$ Knapsack \simeq Hotel Complex
- Weight capacity ≃ Total number of beds
- Items \simeq Travel groups
- $lue{}$ Item weights \simeq Group size
- Randomness e.g., cancellations
- Agency allows overbooking
- Number of beds insufficient

- Knapsack ≃ Hotel Complex
- Weight capacity ≃ Total number of beds
- Items ≃ Travel groups
- $lue{}$ Item weights \simeq Group size
- Randomness e.g., cancellations
- Agency allows overbooking
- Number of beds insufficient
 - \rightarrow groups have to be relocated in other hotels

- Knapsack ≃ Hotel Complex
- Weight capacity ≃ Total number of beds
- Items ≃ Travel groups
- Item weights ≃ Group size
- Randomness e.g., cancellations
- Agency allows overbooking
- Number of beds insufficient
 - \rightarrow groups have to be relocated in other hotels
- Vacant beds filled with last minute offers

$$(TSKP) \quad \max_{x \in \{0,1\}^n} \quad \sum_{i=1}^n r_i x_i$$

s.t.

x: decision vector of 1st stage

$$(\mathit{TSKP}) \quad \max_{\mathsf{x} \in \{0,1\}^n} \quad \sum_{i=1}^n r_i \mathsf{x}_i + \mathbb{E}[\mathcal{Q}(\mathsf{x},\chi)]$$

$$\text{s.t.} \quad \mathcal{Q}(\mathbf{x}, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$

x: decision vector of 1st stage

 $\mathbf{y}^+, \mathbf{y}^-$: decision vectors of 2^{nd} stage (recourse action)

(TSKP)
$$\max_{\mathbf{x} \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$$

s.t.
$$\mathcal{Q}(x,\chi) = \max_{\mathbf{y}^+,\mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$

x: decision vector of 1st stage

 $\mathbf{y}^+, \mathbf{y}^-$: decision vectors of 2^{nd} stage (recourse action)

$$\overline{r}_i < r_i, \; d_i > r_i$$

(TSKP)
$$\max_{\mathbf{x} \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$$

s.t.
$$\mathcal{Q}(\mathbf{x},\chi) = \max_{\mathbf{y}^+,\mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$

x: decision vector of 1st stage

y⁺, **y**⁻: decision vectors of 2nd stage (recourse action)

$$\bar{r}_i < r_i, \, \textcolor{red}{d_i} > r_i$$

(TSKP)
$$\max_{\mathbf{x} \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$$

s.t.
$$\mathcal{Q}(\mathbf{x},\chi) = \max_{\mathbf{y}^+,\mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$

x: decision vector of 1st stage

 $\mathbf{y}^+, \mathbf{y}^-$: decision vectors of 2^{nd} stage (recourse action)

$$\begin{array}{ll} (\textit{TSKP}) & \max_{x \in \{0,1\}^n} & \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)] \\ \\ \text{s.t.} & \mathcal{Q}(x, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \bar{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-, \\ \\ \text{s.t.} & y_j^+ \leq 1 - x_j, \quad j = 1, \dots, n, \\ \\ & y_i^- \leq x_j, \quad j = 1, \dots, n, \end{array}$$

x: decision vector of 1^{st} stage y^+, y^- : decision vectors of 2^{nd} stage (recourse action)

$$(TSKP) \max_{\mathbf{x} \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$$
s.t.
$$\mathcal{Q}(\mathbf{x}, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \bar{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$
s.t.
$$y_j^+ \le 1 - x_j, \quad j = 1, \dots, n,$$

$$y_j^- \le x_j, \quad j = 1, \dots, n,$$

$$\sum_{i=1}^n (x_i + y_i^+ - y_i^-) \chi_i \le c.$$

x: decision vector of 1^{st} stage y^+, y^- : decision vectors of 2^{nd} stage (recourse action)

Two-Stage Knapsack Problem

$$(TSKP) \max_{\mathbf{x} \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$$
s.t.
$$\mathcal{Q}(\mathbf{x}, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$
s.t.
$$y_j^+ \le 1 - x_j, \quad j = 1, \dots, n,$$

$$y_j^- \le x_j, \quad j = 1, \dots, n,$$

$$\sum_{i=1}^n (x_i + y_i^+ - y_i^-) \chi_i \le c.$$

x: decision vector of 1^{st} stage y^+, y^- : decision vectors of 2^{nd} stage (recourse action)

 $\bar{r}_i < r_i, \; d_i > r_i$

Two-Stage Knapsack Problem

(TSKP)
$$\max_{\mathbf{x} \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \sum_{k=1}^K \mathbf{p}^k \mathcal{Q}(\mathbf{x}, \chi^k)$$
s.t.
$$\mathcal{Q}(\mathbf{x}, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$
s.t.
$$y_j^+ \le 1 - x_j, \quad j = 1, \dots, n,$$

$$y_j^- \le x_j, \quad j = 1, \dots, n,$$

$$\sum_{i=1}^n (x_i + y_i^+ - y_i^-) \chi_i \le c.$$

x: decision vector of 1st stage

 $\mathbf{y}^+, \mathbf{y}^-$: decision vectors of 2^{nd} stage (recourse action)

 $\overline{r}_i < r_i, \; d_i > r_i$

$$(TSK^{D}) \quad \max \quad \sum_{i=1}^{n} r_{i}x_{i} + \sum_{k=1}^{K} p^{k} \left(\sum_{i=1}^{n} \overline{r}_{i}(\mathbf{y}^{+})_{i}^{k} - \sum_{i=1}^{n} d_{i}(\mathbf{y}^{-})_{i}^{k} \right)$$
s.t.
$$(\mathbf{y}^{+})_{j}^{k} \leq 1 - x_{j} \qquad j = 1, \dots, n, \ k = 1, \dots, K,$$

$$(\mathbf{y}^{-})_{j}^{k} \leq x_{j} \qquad j = 1, \dots, n, \ k = 1, \dots, K,$$

$$\sum_{i=1}^{n} (x_{i} + (\mathbf{y}^{+})_{i}^{k} - (\mathbf{y}^{-})_{i}^{k}) \chi_{i}^{k} \leq c \qquad \mathbf{k} = 1, \dots, K,$$

$$x \in \{0, 1\}^{n},$$

$$(\mathbf{y}^{+})^{k}, (\mathbf{y}^{-})^{k} \in \{0, 1\}^{n} \qquad \mathbf{k} = 1, \dots, K.$$

x: decision vector of 1st stage

$$(TSK^{D}) \quad \max \quad \sum_{i=1}^{n} r_{i}x_{i} + \sum_{k=1}^{K} p^{k} \left(\sum_{i=1}^{n} \overline{r}_{i}(\mathbf{y}^{+})_{i}^{k} - \sum_{i=1}^{n} d_{i}(\mathbf{y}^{-})_{i}^{k} \right)$$

$$\text{s.t.} \quad (\mathbf{y}^{+})_{j}^{k} \leq 1 - x_{j} \qquad j = 1, \dots, n, \ \mathbf{k} = 1, \dots, K,$$

$$(\mathbf{y}^{-})_{j}^{k} \leq x_{j} \qquad j = 1, \dots, n, \ \mathbf{k} = 1, \dots, K,$$

$$\sum_{i=1}^{n} (x_{i} + (\mathbf{y}^{+})_{i}^{k} - (\mathbf{y}^{-})_{i}^{k}) \chi_{i}^{k} \leq c \qquad \mathbf{k} = 1, \dots, K,$$

$$x \in \{0, 1\}^{n},$$

$$(\mathbf{y}^{+})_{i}^{k}, (\mathbf{y}^{-})_{i}^{k} \in \{0, 1\}^{n} \qquad \mathbf{k} = 1, \dots, K.$$

x: decision vector of 1^{st} stage

 $(y^+)^k, (y^-)^k$: decision vectors in scenario k

$$(TSK^{D}) \quad \max \quad \sum_{i=1}^{n} r_{i}x_{i} + \sum_{k=1}^{K} p^{k} \left(\sum_{i=1}^{n} \overline{r}_{i}(\mathbf{y}^{+})_{i}^{k} - \sum_{i=1}^{n} d_{i}(\mathbf{y}^{-})_{i}^{k} \right)$$
s.t.
$$(\mathbf{y}^{+})_{j}^{k} \leq 1 - x_{j} \qquad j = 1, \dots, n, \ k = 1, \dots, K,$$

$$(\mathbf{y}^{-})_{j}^{k} \leq x_{j} \qquad j = 1, \dots, n, \ k = 1, \dots, K,$$

$$\sum_{i=1}^{n} (x_{i} + (\mathbf{y}^{+})_{i}^{k} - (\mathbf{y}^{-})_{i}^{k}) \chi_{i}^{k} \leq c \qquad \mathbf{k} = 1, \dots, K,$$

$$x \in \{0, 1\}^{n},$$

$$(\mathbf{y}^{+})^{k}, (\mathbf{y}^{-})^{k} \in \{0, 1\}^{n} \qquad \mathbf{k} = 1, \dots, K.$$

x: decision vector of 1st stage $(y^+)^k$, $(y^-)^k$: decision vectors in scenario k

...has linear objective and constraints.

- ...has linear objective and constraints.
- ...has (2n+1)K constraints.

- ...has linear objective and constraints.
- ...has (2n+1)K constraints.
- ...has (2K + 1)n binary decision variables.

- ...has linear objective and constraints.
- ...has (2n+1)K constraints.
- ...has (2K + 1)n binary decision variables.
- ...can have "exponential size".

- ...has linear objective and constraints.
- ...has (2n+1)K constraints.
- ...has (2K + 1)n binary decision variables.
- ...can have "exponential size".
- …in general intractable with exact solvers.

Published and Working Papers treating the TSK^D

Published and Working Papers treating the TSK^D

 R. Lopez (2009): Stochastic Quadratic Knapsack Problems and Semidefinite Programming, Thesis at the LRI, Université Paris Sud, France

Published and Working Papers treating the TSK^D

- R. Lopez (2009): Stochastic Quadratic Knapsack Problems and Semidefinite Programming, Thesis at the LRI, Université Paris Sud, France
- A. Gaivoronski, A. Lisser, R. Lopez and X. Hu (2010): **Knapsack problem** with probability constraints, *Journal of Global Optimization* 49(3)

Published and Working Papers treating the TSK^D

- R. Lopez (2009): Stochastic Quadratic Knapsack Problems and Semidefinite Programming, Thesis at the LRI, Université Paris Sud, France
- A. Gaivoronski, A. Lisser, R. Lopez and X. Hu (2010): Knapsack problem with probability constraints, Journal of Global Optimization 49(3)
- S. Kosuch (2011): Towards an Ant Colony Optimization algorithm for the Two-Stage Knapsack problem, Proc. of the VII. ALIO/EURO Workshop on Applied Combinatorial Optimization

Outline

- 1 The Two-Stage Knapsack Problem
- 2 Non-approximability Result
- 3 (Simple) Approximation Algorithms for special cases
- 4 Conclusion

For all $\epsilon > 0$, there exists no $K^{-\frac{1}{2}+\epsilon}$ -approximation algorithm for the TSKP, unless $\mathcal{P} = \mathcal{NP}$.

We denote AddTSKP ($AddTSK^D$) the variant of TSKP ($AddTSK^D$) where in the second stage items can only be added.

We denote AddTSKP ($AddTSK^D$) the variant of TSKP ($AddTSK^D$) where in the second stage items can only be added.

Observations

■ No relatively complete recourse.

We denote AddTSKP ($AddTSK^D$) the variant of TSKP ($AddTSK^D$) where in the second stage items can only be added.

Observations

- No relatively complete recourse.
- First-stage decision \rightarrow infeasible second stage problem \Rightarrow $f(x) = -\infty$

We denote AddTSKP ($AddTSK^D$) the variant of TSKP ($AddTSK^D$) where in the second stage items can only be added.

Observations

- No relatively complete recourse.
- First-stage decision \rightarrow infeasible second stage problem \Rightarrow $f(x) = -\infty$
- Optimal solution of AddTSKP always respects capacity

$$(MCKP) \quad \max_{x \in \{0,1\}^n} \quad \sum_{i=1} r_i x_i$$

$$(MCKP)$$
 $\max_{x \in \{0,1\}^n}$ $\sum_{i=1}^n r_i x_i$ $ext{s.t.}$ $\sum_{i=1}^n x_i w_i^j \leq c \quad \forall j=1,\ldots,m.$

$$(MCKP)$$
 $\max_{x \in \{0,1\}^n}$ $\sum_{i=1}^n r_i x_i$ $ext{s.t.}$ $\sum_{i=1}^n x_i w_i^j \leq c \quad orall j=1,\ldots,m.$

Theorem (Z. Li'ang & Z. Yin, 1999)

For any $\epsilon>0$, the multiply-constrained knapsack problem does not admit a $m^{-\frac{1}{4}+\epsilon}$ -approximation algorithm unless $\mathcal{P}=\mathcal{N}\mathcal{P}$.

$$(MCKP)$$
 $\max_{x \in \{0,1\}^n}$ $\sum_{i=1}^n r_i x_i$ $\mathrm{s.t.}$ $\sum_{i=1}^n x_i w_i^j \leq c \quad \forall j=1,\ldots,m.$

Corollary (Z. Li'ang & Z. Yin, 1999 + D. Zuckerman, 2006)

For any $\epsilon>0$, the multiply-constrained knapsack problem does not admit a $m^{-\frac{1}{2}+\epsilon}$ -approximation algorithm unless $\mathcal{P}=\mathcal{N}\mathcal{P}$.

For all $\epsilon > 0$, there exists no $K^{-\frac{1}{2}+\epsilon}$ -approximation algorithm for the TSKP, unless $\mathcal{P} = \mathcal{NP}$.

For all $\epsilon > 0$, there exists no $K^{-\frac{1}{2}+\epsilon}$ -approximation algorithm for the TSKP, unless $\mathcal{P} = \mathcal{NP}$.

For all $\epsilon > 0$, there exists no $K^{-\frac{1}{2}+\epsilon}$ -approximation algorithm for the TSKP, unless $\mathcal{P} = \mathcal{NP}$.

Schema of the theorem's proof

■ Reduction from the *MCKP*

For all $\epsilon > 0$, there exists no $K^{-\frac{1}{2}+\epsilon}$ -approximation algorithm for the TSKP, unless $\mathcal{P} = \mathcal{NP}$.

- Reduction from the MCKP
- MCKP

For all $\epsilon > 0$, there exists no $K^{-\frac{1}{2}+\epsilon}$ -approximation algorithm for the TSKP, unless $\mathcal{P} = \mathcal{NP}$.

- Reduction from the MCKP
- MCKP

For all $\epsilon > 0$, there exists no $K^{-\frac{1}{2}+\epsilon}$ -approximation algorithm for the TSKP, unless $\mathcal{P} = \mathcal{NP}$.

- Reduction from the MCKP
- MCKP ←

For all $\epsilon > 0$, there exists no $K^{-\frac{1}{2}+\epsilon}$ -approximation algorithm for the TSKP, unless $\mathcal{P} = \mathcal{NP}$.

- Reduction from the MCKP
- $MCKP \leftarrow AddTSK^D$

Theorem (Main Non-Approximability Result)

For all $\epsilon > 0$, there exists no $K^{-\frac{1}{2}+\epsilon}$ -approximation algorithm for the TSKP, unless $\mathcal{P} = \mathcal{NP}$.

Schema of the theorem's proof

- Reduction from the MCKP
- $MCKP \leftarrow AddTSK^D \leftarrow$

Theorem (Main Non-Approximability Result)

For all $\epsilon > 0$, there exists no $K^{-\frac{1}{2}+\epsilon}$ -approximation algorithm for the TSKP, unless $\mathcal{P} = \mathcal{NP}$.

Schema of the theorem's proof

- Reduction from the MCKP
- $MCKP \leftarrow AddTSK^D \leftarrow TSK^D$

■ Given instance $\mathcal{I} = (r, \overline{r}, p, w, c)$ of $AddTSK^D$.

- Given instance $\mathcal{I} = (r, \overline{r}, p, w, c)$ of $AddTSK^D$.
- Construct instance $\mathcal{I}' = (r, \overline{r}, d, p, w, c)$ of TSK^D s.t.

- Given instance $\mathcal{I} = (r, \overline{r}, p, w, c)$ of $AddTSK^D$.
- Construct instance $\mathcal{I}' = (r, \overline{r}, d, p, w, c)$ of TSK^D s.t.

$$(x^*,(y^+)^*,(y^-)^*)$$
 optimal for $\mathcal{I}'\Longrightarrow (y^-)^*=0$

- Given instance $\mathcal{I} = (r, \overline{r}, p, w, c)$ of $AddTSK^D$.
- Construct instance $\mathcal{I}' = (r, \overline{r}, d, p, w, c)$ of TSK^D s.t.

$$(x^*,(y^+)^*,(y^-)^*)$$
 optimal for $\mathcal{I}'\Longrightarrow (y^-)^*=0$

■ Idea:

- Given instance $\mathcal{I} = (r, \overline{r}, p, w, c)$ of $AddTSK^D$.
- Construct instance $\mathcal{I}' = (r, \overline{r}, d, p, w, c)$ of TSK^D s.t.

$$(x^*,(y^+)^*,(y^-)^*)$$
 optimal for $\mathcal{I}'\Longrightarrow (y^-)^*=0$

■ Idea:

- Given instance $\mathcal{I} = (r, \overline{r}, p, w, c)$ of $AddTSK^D$.
- Construct instance $\mathcal{I}' = (r, \overline{r}, d, p, w, c)$ of TSK^D s.t.

$$(x^*,(y^+)^*,(y^-)^*)$$
 optimal for $\mathcal{I}'\Longrightarrow (y^-)^*=0$

■ Idea: Choose d_i (i = 1, ..., n) large enough!

■ Given instance $\mathcal{I} = (r, w, c)$ of *MCKP*.

- Given instance $\mathcal{I} = (r, w, c)$ of *MCKP*.
- Construct instance $\mathcal{I}' = (r, \overline{r}, p, w, c)$ of $AddTSK^D$ s.t.

- Given instance $\mathcal{I} = (r, w, c)$ of *MCKP*.
- Construct instance $\mathcal{I}' = (r, \overline{r}, p, w, c)$ of $AddTSK^D$ s.t.

$$(x^*,(y^+)^*)$$
 optimal for $\mathcal{I}'\Longrightarrow (y^+)^*=0$

- Given instance $\mathcal{I} = (r, w, c)$ of *MCKP*.
- Construct instance $\mathcal{I}' = (r, \overline{r}, p, w, c)$ of $AddTSK^D$ s.t.

$$(x^*,(y^+)^*)$$
 optimal for $\mathcal{I}'\Longrightarrow (y^+)^*=0$

■ Idea: Choose \overline{r}_i (i = 1, ..., n) small enough!

- Given instance $\mathcal{I} = (r, w, c)$ of *MCKP*.
- Construct instance $\mathcal{I}' = (r, \overline{r}, p, w, c)$ of $AddTSK^D$ s.t.

$$(x^*,(y^+)^*)$$
 optimal for $\mathcal{I}' \Longrightarrow (y^+)^* = 0$

■ Idea: Choose \overline{r}_i (i = 1, ..., n) small enough!

- Given instance $\mathcal{I} = (r, w, c)$ of *MCKP*.
- Construct instance $\mathcal{I}' = (r, \overline{r}, p, w, c)$ of $AddTSK^D$ s.t.

$$(x^*,(y^+)^*)$$
 optimal for $\mathcal{I}'\Longrightarrow (y^+)^*=0$
 $(x^*,(y^+)^*)$ optimal for $\mathcal{I}'\Longrightarrow x^*$ optimal for \mathcal{I}

■ Idea: Choose \overline{r}_i (i = 1, ..., n) small enough!

- Given instance $\mathcal{I} = (r, w, c)$ of *MCKP*.
- Construct instance $\mathcal{I}' = (r, \overline{r}, p, w, c)$ of $AddTSK^D$ s.t.

$$(x^*,(y^+)^*)$$
 optimal for $\mathcal{I}' \Longrightarrow (y^+)^* = 0$

$$(x^*,(y^+)^*)$$
 optimal for $\mathcal{I}'\Longrightarrow x^*$ optimal for \mathcal{I}

Idea: Choose \overline{r}_i $(i=1,\ldots,n)$ small enough! $r \in \mathbb{Z}_+^n \to \overline{r}_i = \frac{1}{n+1}$ $(i=1,\ldots,n)$

- Given instance $\mathcal{I} = (r, w, c)$ of *MCKP*.
- Construct instance $\mathcal{I}' = (r, \overline{r}, p, w, c)$ of $AddTSK^D$ s.t.

$$(x^*,(y^+)^*)$$
 optimal for $\mathcal{I}'\Longrightarrow (y^+)^*=0$
 $(x^*,(y^+)^*)$ optimal for $\mathcal{I}'\Longrightarrow x^*$ optimal for \mathcal{I}

Idea: Choose \overline{r}_i (i = 1, ..., n) small enough! $r \in \mathbb{Z}_+^n \to \overline{r}_i = \frac{1}{n+1}$ (i = 1, ..., n) $\Rightarrow \sum_{j=1}^m \frac{1}{m} \sum_{i=1}^n \frac{1}{n+1} < 1$

Linköping University

Outline

- 1 The Two-Stage Knapsack Problem
- 2 Non-approximability Result
- 3 (Simple) Approximation Algorithms for special cases
- 4 Conclusion

Lemma

Let $\alpha \in (0,1)$ and denote $TSKP(\alpha,\cdot)$ the variant of the TSKP such that $\overline{r} = \alpha \cdot r$. Then there exists an approximation algorithm for the $TSKP(\alpha,\cdot)$ with approximation ratio α .

Lemma

Let $\alpha \in (0,1)$ and denote $TSKP(\alpha,\cdot)$ the variant of the TSKP such that $\overline{r} = \alpha \cdot r$. Then there exists an approximation algorithm for the $TSKP(\alpha,\cdot)$ with approximation ratio α .

Algorithm

Lemma

Let $\alpha \in (0,1)$ and denote $TSKP(\alpha,\cdot)$ the variant of the TSKP such that $\overline{r} = \alpha \cdot r$. Then there exists an approximation algorithm for the $TSKP(\alpha,\cdot)$ with approximation ratio α .

Algorithm

Add no item in the first stage.

Lemma

Let $\alpha \in (0,1)$ and denote $TSKP(\alpha,\cdot)$ the variant of the TSKP such that $\overline{r} = \alpha \cdot r$. Then there exists an approximation algorithm for the $TSKP(\alpha,\cdot)$ with approximation ratio α .

Proposition (Genaralisation of the lemma)

For any instance of the TSKP define $\alpha := \min_{i=1...,n} \frac{\overline{r}_i}{r_i}$. Then adding no items in the first stage always yields a solution whose solution value is at least an α -fraction of the optimal solution value.

Proposition

Proposition

Under the assumption of a polynomial scenario model, the TSKP admits a $\frac{1}{n}$ -approximation algorithm.

Proposition

Under the assumption of a polynomial scenario model, the TSKP admits a $\frac{1}{n}$ -approximation algorithm.

Algorithm

Proposition

Under the assumption of a polynomial scenario model, the TSKP admits a $\frac{1}{n}$ -approximation algorithm.

Algorithm

Determine the item that gives us the highest expected reward when added all alone (in first- or second stage).

Proposition

Under the assumption of a polynomial scenario model, the TSKP admits a $\frac{1}{n}$ -approximation algorithm.

Algorithm

Determine the item that gives us the highest expected reward when added all alone (in first- or second stage).

Corollary

If the item weights are independently distributed with polynomial number of realizations, the TSKP admits a $\frac{1}{n}$ -approximation algorithm.

Linkoping University

Proposition

Under the assumption of a polynomial scenario model, the TSKP admits a $\frac{1}{n}$ -approximation algorithm.

Algorithm

Determine the item that gives us the highest expected reward when added all alone (in first- or second stage).

Corollary

If the item weights are independently distributed with polynomial number of realizations, the TSKP admits a $\frac{1}{n}$ -approximation algorithm.

Linkoping University

Proposition

Proposition

For all $\epsilon > 0$, there exists an approximation algorithm for the K-AddTSKP with approximation-ratio $\frac{1}{2}-\epsilon$.

Proposition

For all $\epsilon > 0$, there exists an approximation algorithm for the K-AddTSKP with approximation-ratio $\frac{1}{2}-\epsilon$.

Algorithm

Proposition

For all $\epsilon > 0$, there exists an approximation algorithm for the K-AddTSKP with approximation-ratio $\frac{1}{2}-\epsilon$.

Algorithm

■ Solve the MCKP(r, w, c) with PTAS.

The *AddTSKP* under the assumption of a fix number of scenarios

Proposition

For all $\epsilon > 0$, there exists an approximation algorithm for the K-AddTSKP with approximation-ratio $\frac{1}{2}-\epsilon$.

Algorithm

- Solve the MCKP (r, w, c) with PTAS.
- $\forall k$, solve $KP(\bar{r}, w^k, c)$ with FPTAS.

The AddTSKP under the assumption of a fix number of scenarios

Proposition

For all $\epsilon > 0$, there exists an approximation algorithm for the K-AddTSKP with approximation-ratio $\frac{1}{2}-\epsilon$.

Algorithm

- Solve the MCKP (r, w, c) with PTAS.
- $\forall k$, solve $KP(\bar{r}, w^k, c)$ with FPTAS.
- Either output solution of former, or 0.

Outline

- 1 The Two-Stage Knapsack Problem
- 2 Non-approximability Result
- 3 (Simple) Approximation Algorithms for special cases
- 4 Conclusion

■ TSK^D cannot be approximated in polynomial time within a ratio better than $K^{-\frac{1}{2}}$ (unless $\mathcal{P} = \mathcal{N}\mathcal{P}$).

- TSK^D cannot be approximated in polynomial time within a ratio better than $K^{-\frac{1}{2}}$ (unless $\mathcal{P} = \mathcal{N}\mathcal{P}$).
- Reduction from the multiply constrained knapsack problem

- TSK^D cannot be approximated in polynomial time within a ratio better than $K^{-\frac{1}{2}}$ (unless $\mathcal{P} = \mathcal{N}\mathcal{P}$).
- Reduction from the multiply constrained knapsack problem
- Approximation algorithms for special cases:

- TSK^D cannot be approximated in polynomial time within a ratio better than $K^{-\frac{1}{2}}$ (unless $\mathcal{P} = \mathcal{N}\mathcal{P}$).
- Reduction from the multiply constrained knapsack problem
- Approximation algorithms for special cases:
 - → Linear dependency first- and second-stage rewards

- TSK^D cannot be approximated in polynomial time within a ratio better than $K^{-\frac{1}{2}}$ (unless $\mathcal{P} = \mathcal{N}\mathcal{P}$).
- Reduction from the multiply constrained knapsack problem
- Approximation algorithms for special cases:
 - → Linear dependency first- and second-stage rewards
 - → Polynomial scenario model

- TSK^D cannot be approximated in polynomial time within a ratio better than $K^{-\frac{1}{2}}$ (unless $\mathcal{P} = \mathcal{N}\mathcal{P}$).
- Reduction from the multiply constrained knapsack problem
- Approximation algorithms for special cases:
 - → Linear dependency first- and second-stage rewards
 - → Polynomial scenario model
 - \rightarrow Fixed number of scenarios (K AddTSKP)

■ More complex approximation algorithms for special cases

- More complex approximation algorithms for special cases
- PTAS for K (Add)TSKP

- More complex approximation algorithms for special cases
- PTAS for K (Add)TSKP
- Approximation algorithm for general case

- More complex approximation algorithms for special cases
- PTAS for K (Add)TSKP
- Approximation algorithm for general case
- Approximation in case of continuous distributions

Thank you!

:-)

Grazie!

