Towards an Ant Colony Optimization algorithm for the Two-Stage Knapsack problem

Stefanie Kosuch

Postdoc Technical Computer Science Lab Linköpings Universitet (Sweden)

VII ALIO/EURO - Workshop on Appl. Combinatorial Optimization Porto, Portugal, May 4 - 6, 2011

1 The Two-Stage Knapsack Problem

- 1 The Two-Stage Knapsack Problem
- 2 The ACO-algorithm

- 1 The Two-Stage Knapsack Problem
- 2 The ACO-algorithm
- 3 Numerical tests

- 1 The Two-Stage Knapsack Problem
- 2 The ACO-algorithm
- 3 Numerical tests
- 4 Future Work

Outline

- 1 The Two-Stage Knapsack Problem
- 2 The ACO-algorithm
- 3 Numerical tests
- 4 Future Work

c > 0: Knapsack weight capacity

- c > 0: Knapsack weight capacity
- \blacksquare n items

- c > 0: Knapsack weight capacity
- \blacksquare n items
- $r_i > 0$: reward of item i

- c > 0: Knapsack weight capacity
- \blacksquare n items
- $r_i > 0$: reward of item i
- *w_i*: weight of item *i*

- $\mathbf{c} > 0$: Knapsack weight capacity
- \blacksquare n items
- $r_i > 0$: reward of item i
- w_i: weight of item i

Objective

Maximize the total reward of chosen items whose total weight respect knapsack capacity.

- c > 0: Knapsack weight capacity
- \blacksquare n items
- $r_i > 0$: reward of item i
- \mathbf{w}_i : weight of item i

Objective

Maximize the total reward of chosen items whose total weight respect knapsack capacity.

Applications

Logistics - Resource allocation - Scheduling - Network Optimization etc.

Linköping University

The Stochastic Knapsack Problem with Random Weights

- c > 0: Knapsack weight capacity
- \blacksquare n items
- $r_i > 0$: reward of item i
- **•** χ_i : random weight of item *i*

Objective

Maximize the total reward of chosen items whose total weight respect knapsack capacity.

The Stochastic Knapsack Problem with Random Weights

- c > 0: Knapsack weight capacity
- \blacksquare *n* items
- $r_i > 0$: reward of item i
- χ_i: random weight of item i weight unknown when decision has to be made

Objective

Maximize the total reward of chosen items whose total weight respect knapsack capacity.

The Stochastic Knapsack Problem with Random Weights

- c > 0: Knapsack weight capacity
- \blacksquare *n* items
- $r_i > 0$: reward of item i
- χ_i: random weight of item i weight unknown when decision has to be made

Objective

Maximize the total reward of chosen items whose total weight respect knapsack capacity.

Question

How to handle the fact that chosen items might not respect knapsack capacity?

Linköping University

■ First stage: items can be put in the knapsack

- First stage: items can be put in the knapsack
- First stage ←→ second stage: item weights are revealed

- First stage: items can be put in the knapsack
- lacktriangledown First stage \longleftrightarrow second stage: item weights are revealed
- Second stage: The decision can/has to be corrected

- First stage: items can be put in the knapsack
- First stage → second stage: item weights are revealed
- Second stage: Items
 - ...have to be removed in case of an overweight
 - ...can be added if capacity sufficient
 - ...can be exchanged to increase gain.

- First stage: items can be put in the knapsack
- First stage → second stage: item weights are revealed
- Second stage: Items
 - ...have to be removed in case of an overweight
 - ...can be added if capacity sufficient
 - ...can be exchanged to increase gain.
- Correction of the decision causes penalty

- First stage: items can be put in the knapsack
- First stage ←→ second stage: item weights are revealed
- Second stage: Items
 - ...have to be removed in case of an overweight
 - ...can be added if capacity sufficient
 - ...can be exchanged to increase gain.
- Correction of the decision causes penalty

Assumption: Discretely distributed weights

- First stage: items can be put in the knapsack
- First stage ←→ second stage: item weights are revealed
- Second stage: Items
 - ...have to be removed in case of an overweight
 - ...can be added if capacity sufficient
 - ...can be exchanged to increase gain.
- Correction of the decision causes penalty

Assumption: Discretely distributed weights

K scenarios

- First stage: items can be put in the knapsack
- First stage ←→ second stage: item weights are revealed
- Second stage: Items
 - ...have to be removed in case of an overweight
 - ...can be added if capacity sufficient
 - ...can be exchanged to increase gain.
- Correction of the decision causes penalty

Assumption: Discretely distributed weights

- K scenarios
- K realizations χ^1, \dots, χ^K

- First stage: items can be put in the knapsack
- First stage ←→ second stage: item weights are revealed
- Second stage: Items
 - ...have to be removed in case of an overweight
 - ...can be added if capacity sufficient
 - ...can be exchanged to increase gain.
- Correction of the decision causes penalty

Assumption: Discretely distributed weights

- K scenarios
- K realizations χ^1, \dots, χ^K
- $\blacksquare \mathbb{P}\{\chi = \chi^k\} = p^k$

- Knapsack ≃ Hotel Complex
- lacktriangle Weight capacity \simeq Total number of beds
- Items \simeq Travel groups
- lacktriangle Item weights \simeq Group size

- $lue{}$ Knapsack \simeq Hotel Complex
- Weight capacity ≃ Total number of beds
- Items \simeq Travel groups
- Item weights ≃ Group size
- Randomness e.g., cancellations

- Knapsack ≃ Hotel Complex
- Weight capacity ≃ Total number of beds
- Items \simeq Travel groups
- Item weights ≃ Group size
- Randomness e.g., cancellations
- Agency allows overbooking

- Knapsack ≃ Hotel Complex
- Weight capacity ≃ Total number of beds
- Items \simeq Travel groups
- $lue{}$ Item weights \simeq Group size
- Randomness e.g., cancellations
- Agency allows overbooking
- Number of beds insufficient

- Knapsack ≃ Hotel Complex
- Weight capacity ≃ Total number of beds
- Items ≃ Travel groups
- $lue{}$ Item weights \simeq Group size
- Randomness e.g., cancellations
- Agency allows overbooking
- Number of beds insufficient
 - \rightarrow groups have to be relocated in other hotels

- Knapsack ≃ Hotel Complex
- Weight capacity ≃ Total number of beds
- Items ≃ Travel groups
- Item weights ≃ Group size
- Randomness e.g., cancellations
- Agency allows overbooking
- Number of beds insufficient
 - \rightarrow groups have to be relocated in other hotels
- Vacant beds filled with last minute offers

Two-Stage Knapsack Problem

Two-Stage Knapsack Problem

$$(TSKP) \quad \max_{x \in \{0,1\}^n} \quad \sum_{i=1}^n r_i x_i$$

s.t.

x: decision vector of 1st stage

Two-Stage Knapsack Problem

(TSKP)
$$\max_{\mathbf{x} \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$$

$$\text{s.t.} \quad \mathcal{Q}(\mathbf{x}, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$

x: decision vector of 1st stage

 $\mathbf{y}^+,\mathbf{y}^-\colon$ decision vectors of 2^{nd} stage (recourse action)

 $\bar{r}_i < r_i, \; d_i > r_i$

(TSKP)
$$\max_{\mathbf{x} \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$$

s.t.
$$\mathcal{Q}(x,\chi) = \max_{\mathbf{y}^+,\mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$

x: decision vector of 1st stage

 $\mathbf{y}^+, \mathbf{y}^-$: decision vectors of 2^{nd} stage (recourse action)

$$\overline{r}_i < r_i, d_i > r_i$$

(TSKP)
$$\max_{\mathbf{x} \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$$

s.t.
$$\mathcal{Q}(x,\chi) = \max_{\mathbf{y}^+,\mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$

x: decision vector of 1st stage

 $\mathbf{y}^+, \mathbf{y}^-$: decision vectors of 2^{nd} stage (recourse action)

 $\bar{r}_i < r_i, \, \textcolor{red}{d_i} > r_i$

(TSKP)
$$\max_{\mathbf{x} \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$$

s.t.
$$\mathcal{Q}(\mathbf{x},\chi) = \max_{\mathbf{y}^+,\mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$

x: decision vector of 1st stage

 $\mathbf{y}^+, \mathbf{y}^-$: decision vectors of 2^{nd} stage (recourse action)

 $\bar{r}_i < r_i, \; d_i > r_i$

$$\begin{array}{ll} (\textit{TSKP}) & \max_{x \in \{0,1\}^n} & \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)] \\ \\ \text{s.t.} & \mathcal{Q}(x, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \bar{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-, \\ \\ \text{s.t.} & y_j^+ \leq 1 - x_j, \quad j = 1, \dots, n, \\ \\ & y_i^- \leq x_j, \quad j = 1, \dots, n, \end{array}$$

x: decision vector of 1st stage $\mathbf{y}^+, \mathbf{y}^-$: decision vectors of 2nd stage (recourse action)

(TSKP)
$$\max_{\mathbf{x} \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$$
s.t.
$$\mathcal{Q}(x, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$
s.t.
$$y_j^+ \le 1 - x_j, \quad j = 1, \dots, n,$$

$$y_j^- \le x_j, \quad j = 1, \dots, n,$$

$$\sum_{i=1}^n (x_i + y_i^+ - y_i^-) \chi_i \le c.$$

x: decision vector of 1^{st} stage y^+, y^- : decision vectors of 2^{nd} stage (recourse action)

 $\bar{r}_i < r_i, \; d_i > r_i$

(TSKP)
$$\max_{\mathbf{x} \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \mathbb{E}[\mathcal{Q}(\mathbf{x}, \chi)]$$
s.t.
$$Q(x, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$
s.t.
$$y_j^+ \le 1 - x_j, \quad j = 1, \dots, n,$$

$$y_j^- \le x_j, \quad j = 1, \dots, n,$$

$$\sum_{i=1}^n (x_i + y_i^+ - y_i^-) \chi_i \le c.$$

x: decision vector of 1^{st} stage y^+, y^- : decision vectors of 2^{nd} stage (recourse action)

(TSKP)
$$\max_{\mathbf{x} \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \sum_{k=1}^K \mathbf{p}^k \mathcal{Q}(\mathbf{x}, \chi^k)$$
s.t.
$$\mathcal{Q}(\mathbf{x}, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$
s.t.
$$y_j^+ \le 1 - x_j, \quad j = 1, \dots, n,$$

$$y_j^- \le x_j, \quad j = 1, \dots, n,$$

$$\sum_{i=1}^n (x_i + y_i^+ - y_i^-) \chi_i \le c.$$

x: decision vector of 1st stage

 $\mathbf{y}^+, \mathbf{y}^-$: decision vectors of 2^{nd} stage (recourse action)

 $\overline{r}_i < r_i, \; d_i > r_i$

Outline

- 1 The Two-Stage Knapsack Problem
- 2 The ACO-algorithm
- 3 Numerical tests
- 4 Future Work

Natural idea: try metaheuristics!

■ Possibility to use **heuristic utility measures**

- Possibility to use heuristic utility measures
- Construction of solution \rightarrow no evaluation

- Possibility to use **heuristic utility measures**
- Construction of solution → no evaluation
- Obj. func. evaluation ← comparison

(TSKP)
$$\max_{\mathbf{x} \in \{0,1\}^n} \sum_{i=1}^n r_i x_i + \sum_{k=1}^K \mathbf{p}^k \mathcal{Q}(\mathbf{x}, \chi^k)$$
s.t.
$$\mathcal{Q}(\mathbf{x}, \chi) = \max_{\mathbf{y}^+, \mathbf{y}^- \in \{0,1\}^n} \sum_{i=1}^n \overline{\mathbf{r}}_i \mathbf{y}_i^+ - \sum_{i=1}^n \mathbf{d}_i \mathbf{y}_i^-,$$
s.t.
$$y_j^+ \le 1 - x_j, \quad j = 1, \dots, n,$$

$$y_j^- \le x_j, \quad j = 1, \dots, n,$$

$$\sum_{i=1}^n (x_i + y_i^+ - y_i^-) \chi_i \le c.$$

x: decision vector of 1st stage

 $\mathbf{y}^+, \mathbf{y}^-$: decision vectors of 2^{nd} stage (recourse action)

$$\overline{r}_i < r_i, \; d_i > r_i$$

- Possibility to use **heuristic utility measures**
- Construction of solution → no evaluation
- Obj. func. evaluation ← comparison

Complete directed search graph: n vertices $\simeq n$ items

- **Complete directed** search graph: n vertices n items
- Add starting vertex

- **Complete directed** search graph: n vertices n items
- Add starting vertex
- Add termination vertex

- **Complete directed** search graph: n vertices n items
- Add starting vertex
- Add termination vertex
- Pheromone on arcs

■ 4 factors to be considered:

- 4 factors to be considered:
 - item weight
 - first-stage reward
 - second-stage reward
 - second-stage penalty

- 4 factors to be considered:
 - item weight
 - first-stage reward
 - second-stage reward
 - second-stage penalty
- no "natural" certificate for termination

- 4 factors to be considered:
 - item weight
 - first-stage reward
 - second-stage reward
 - second-stage penalty
- no "natural" certificate for termination
- utility measure for termination vertex?

Heuristic utility measure II: Propositions

 \mathcal{K}_i : set of scenarios where item *i* still fits

■ Simple utility measure:

$$\eta_i^{\mathcal{S}} = \sum_{k \in \mathcal{K}_i} p^k \frac{r_i}{\chi_i^k}$$

Heuristic utility measure II: Propositions

 \mathcal{K}_i : set of scenarios where item *i* still fits

■ Simple utility measure:

$$\eta_i^{\mathcal{S}} = \sum_{k \in \mathcal{K}_i} p^k \frac{r_i}{\chi_i^k}$$

■ Difference utility measure:

$$\eta_i^D = \sum_{k \in \mathcal{K}_i} p^k \frac{r_i - \overline{r}_i}{\chi_i^k}$$

Heuristic utility measure II: Propositions

 \mathcal{K}_i : set of scenarios where item i still fits

■ Simple utility measure:

$$\eta_i^{\mathcal{S}} = \sum_{k \in \mathcal{K}_i} p^k \frac{r_i}{\chi_i^k}$$

■ Difference utility measure:

$$\eta_i^D = \sum_{k \in \mathcal{K}_i} p^k \frac{r_i - \overline{r}_i}{\chi_i^k}$$

Ratio utility measure:

Stefanie Kosuch

$$\eta_i^R = \sum_{k \in \mathcal{K}_i} p^k \frac{r_i/\overline{r}_i}{\chi_i^k}$$

ersity

versity

 \mathcal{K}_i : set of scenarios where item *i* still fits

■ Simple non-utility measure:

$$\nu_i^{\mathcal{S}} = \sum_{k \notin \mathcal{K}_i} p^k \frac{d_i}{\chi_i^k} \qquad \nu_i^{\mathcal{S}} = \sum_{k=1}^K p^k \frac{\overline{r}_i}{\chi_i^k}$$

 \mathcal{K}_i : set of scenarios where item *i* still fits

■ Simple non-utility measure:

$$\nu_i^S = \sum_{k \notin \mathcal{K}_i} p^k \frac{d_i}{\chi_i^k} \qquad \nu_i^S = \sum_{k=1}^K p^k \frac{\overline{r}_i}{\chi_i^k}$$

■ Difference utility measure:

$$\nu_i^D = \sum_{k \notin \mathcal{K}_i} p^k \frac{d_i - r_i}{\chi_i^k}$$

 \mathcal{K}_i : set of scenarios where item i still fits

Simple non-utility measure:

$$\nu_i^S = \sum_{k \notin \mathcal{K}_i} p^k \frac{d_i}{\chi_i^k} \qquad \nu_i^S = \sum_{k=1}^K p^k \frac{\overline{r}_i}{\chi_i^k}$$

■ Difference utility measure:

$$\nu_i^D = \sum_{k \notin \mathcal{K}_i} p^k \frac{d_i - r_i}{\chi_i^k}$$

Ratio utility measure:

$$\nu_i^R = \sum_{k \notin \mathcal{K}_i} p^k \frac{d_i/r_i}{\chi_i^k}$$

 \mathcal{K}_i : set of scenarios where item i still fits

■ Simple non-utility measure:

$$u_i^{S_1} = \sum_{k \notin \mathcal{K}_i} p^k \frac{d_i}{\chi_i^k} \quad \text{or} \quad \nu_i^{S_2} = \sum_{k=1}^K p^k \frac{\overline{r}_i}{\chi_i^k}$$

Difference non-utility measure:

$$u_i^D = \sum_{k \notin \mathcal{K}_i} p^k \frac{d_i - r_i}{\chi_i^k}$$

Ratio non-utility measure:

$$u_i^R = \sum_{k \notin \mathcal{K}_i} p^k \frac{d_i/r_i}{\chi_i^k}$$

Utility of termination:

$$\eta_{n+1} = \min_{i \in \{1, \dots, n\}} \nu_i$$

Outline

- 1 The Two-Stage Knapsack Problem
- 2 The ACO-algorithm
- 3 Numerical tests
- 4 Future Work

Comparison of the different utility measures I

Comparison of the different utility measures II

		Difference measure			Simple measure		
n-K-t	Inst.	Runs	Gap	CPU(s)	Runs	Gap	CPU(s)
100-5-0.25	3/3	57%	0.02%	35	13%	0.05%	30
100-5-0.5	2/3	28%	0.01%	57	1%	0.03%	52
100-5-0.75	1/3	1%	0.02%	69	0%	0.02%	71
100-10-0.25	3/3	93%	0.06%	47	63%	0.01%	34
100-10-0.5	2/3	23%	0.01%	72	0%	0.03%	63
100-10-0.75	1/3	15%	0.02%	85	0%	0.04%	85
100-30-0.25	2/3	58%	0.02%	147	0%	0.12%	107
100-30-0.5	3/3	63%	0.01%	232	8%	0.02%	179
100-30-0.75	1/3	25%	0.01%	295	0%	0.03%	183

Outline

- 1 The Two-Stage Knapsack Problem
- 2 The ACO-algorithm
- 3 Numerical tests
- 4 Future Work

■ Improve utility measure for higher *n*

- Improve utility measure for higher *n*
- Consider sampling for higher K

- Improve utility measure for higher *n*
- Consider sampling for higher *K*
- Consider using approximate knapsack algorithm for higher n

- Improve utility measure for higher *n*
- Consider sampling for higher *K*
- Consider using approximate knapsack algorithm for higher n
- **■** Comparison with other metaheuristics

Thank you!

:-)

Obrigada!

