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Abstract. We propose an Ant Colony Optimization algorithm for the
Two-Stage Knapsack problem with discretely distributed weights and
capacity. To the best of our knowledge this is the first attempt to solve a
Two-Stage Knapsack problem using a metaheuristic. Two heuristic util-
ity measures are proposed and compared. Moreover, we introduce the
novel idea of non-utility measures in order to obtain a criterion for the
construction termination. We argue why for the proposed measures it is
more efficient to place pheromone on arcs instead of vertices or edges
of the complete search graph. Numerical tests show that our algorithm
is able to produce, in much shorter computing time, solutions of simi-
lar quality than CPLEX after 2h. Moreover, with increasing number of
scenarios the percentage of runs where our algorithm is able to produce
better solutions than CPLEX (after 2h) increases.

1 Introduction

The knapsack problem is a widely studied combinatorial optimization problem.
Special interest arises from numerous real life applications for example in logis-
tics, network optimization and scheduling. The basic problem consists in choos-
ing a subset out of a given set of items such that the total weight of the subset
does not exceed a given limit (the capacity of the knapsack) and the total benefit
of the subset is maximized (for more information on (deterministic) knapsack
problems see the book by Kellerer et al. [10]). However, most real life problems
are non-deterministic in the sense that some of the parameters are not (exactly)
known at the moment when the decision has to be made. If randomness occurs
in the capacity constraint, the main question that has to be answered is if a
violation of the capacity constraint (i.e. an overload) could be acceptable. If an
overload cannot be permitted in any case, the model maker has two possibilities:
Either to force the feasible solutions of the resulting problem to satisfy the ca-
pacity constraint in any case. This generally leads to very conservative decisions
and the resulting problem might even be infeasible or only have trivial feasible
solutions. Or to allow for later corrective decisions at, naturally, additional costs.
This latter model is called a multi-stage decision model in the literature (for an
introduction to stochastic programming models see e.g. [21]).
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Several variants of stochastic knapsack problems have been studied so far and the
interest seems still to increase. Among the publications on stochastic knapsack
problems released in the last year you can find papers on the simple-recourse
knapsack problem ([17]), the chance-constrained knapsack problem ([8]), two-
stage knapsack problems ([7]) as well as dynamic settings of the stochastic knap-
sack problem ([2]).

In this paper we allow the item weights and the capacity to be random and
study a two-stage variant of the knapsack problem, denoted TSKP in the re-
mainder. We assume the vector that contains capacity and item weights to be
discretely distributed, i.e. to only admit a finite number of realizations with non-
zero probability. In fact, in [12] it has been shown that a stochastic combinatorial
optimization problem such as the TSKP can be approximated to any desired
precision by replacing the underlying distribution by a finite random sample.

It is well known that in the case of finite weight distributions the TSKP
can be equivalently reformulated as a deterministic linear programming prob-
lem with binary decision variables (see e.g. [7]). However, the set of constraints
and binary decision variables in the reformulation grows with both the number
of items as well as the number of scenarios. It is thus typically very large, or
even exponential in the number of items. The aim of this paper is therefore to
propose an Ant Colony Optimization (ACO) algorithm for the TSKP in or-
der to obtain near optimal or even optimal solutions in short computing time
(for an introduction to ACO-algorithms and standard procedures see [15]). We
think that an ACO-algorithm is a good choice to solve the TSKP due to the
possibility to effectively use utility measures. Moreover, ants are building (new)
solutions without needing to evaluate the objective function, which, in the case
of the TSKP , is an NP-hard task itself.

In the last decade, several metaheuristics for Stochastic Combinatorial Op-
timization problems (SCOP s) have been presented. There are two aspects why
metaheuristics are important tools to solve SCOP s: the problem size (especially
in the case of independently discretely distributed parameters or simply a high
number of possible scenarios) and the question of how to evaluate the objective
function. In fact, in most cases evaluating the objective function of an SCOP is
NP-hard. In other cases, no deterministic equivalent reformulation is known and
only approximate values can be obtained (e.g. using Sample Average Approxi-
mation). Both difficulties can be tackled by applying appropriate metaheuristics
(see e.g. [3]). However, to the best of our knowledge, no special purpose meta-
heuristic for the TSKP has yet been proposed. Our work is, however, inspired by
previous works on ACO-algorithms for the related Multiply Constrained Knap-
sack problem MCKP (also known as multidimensional knapsack problem or
multiple constraint knapsack problem, see e.g. [6],[9]).

This paper is in continuation of the preliminary work presented in the ex-
tended abstract [13]. Main differences are the modified pheromone update pro-
cedure (see subsection 3.2 for more details), the important decrease of CPU time
due to a smaller number of solution evaluations and the use of a specific knap-
sack algorithm (see subsection 3.5) as well as the extension of the numerical
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tests and their analysis (see section 4). The algorithmic changes also entailed
important changes in the parametrization. Moreover, the ratio measure that has
been considered in [13] is omitted in this paper due to its inferiority compared
to the simple and difference measures (see subsection 3.3).

2 Problem Formulation, Properties and an Application

We consider a stochastic two-stage knapsack problem where both the knapsack
capacity as well as the item weights are not known in the first stage but come to
be known before the second-stage decision has to be made. Therefore, we handle
capacity and weights as random variables and assume that the capacity-weight-
vector (γ, χ) ∈ R1+n is discretely distributed with K possible realizations (or
scenarios) (γ1, χ1), . . . , (γK , χK). The corresponding, non-zero probabilities are
denoted p1, . . . , pK . Weights and capacity are assumed to be strictly positive in
all scenarios.

In the first stage, items can be placed in the knapsack. The corresponding
first-stage decision vector is x ∈ {0, 1}n. Placing item i in the knapsack in the
first stage results in a reward ri > 0. At the beginning of the second stage, the
weights of all items as well as the capacity are revealed. First-stage items can
now be removed and additional items be added in order to make the capacity
constraint be respected and/or to increase the total gain.

If item i is removed, a penalty di has to be paid that is naturally strictly
greater than the first-stage reward ri. The removal of item i is modeled by the
decision variable y−i that is set to 1 if the item is removed and to 0 otherwise.
Similarly, we assume that the second-stage reward ri > 0 is strictly smaller than
the first-stage reward. If an item is added in the second stage we set the corre-
sponding binary decision variable y+i to 1. The resulting Two-Stage Knapsack
problem with discrete weight distributions can be formulated as follows:

Two-Stage Knapsack Problem with Discretely Distributed Weights
(TSKP )

max
x∈{0,1}n

n∑
i=1

rixi +

K∑
k=1

pkQ(x, γk, χk) (1)

s.t. Q(x, γ, χ) = max
y+,y−∈{0,1}n

n∑
i=1

riy
+
i −

n∑
i=1

diy
−
i (2)

s.t. y+i ≤ 1− xi, ∀ i = 1, . . . , n, (3)

y−i ≤ xi, ∀ i = 1, . . . , n, (4)
n∑
i=1

(xi + y+i − y
−
i )χi ≤ γ. (5)

The TSKP is a relatively complete recourse problem, i.e. for every feasible first-
stage decision there exists a feasible second-stage decision. Moreover, given a
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first-stage decision and a realization of (γ, χ), solving the second-stage problem
means solving a deterministic knapsack problem. Evaluating the objective func-
tion for a given first-stage solution is thus NP-hard.

The TSKP has a deterministic equivalent reformulation as a combinatorial
optimization problem with linear objective and constraints. This reformulation
is obtained by introducing K copies of the second-stage decision vector and
treating the second-stage constraints for each scenario separately (see e.g. [7]).
However, the obtained reformulation has (2K + 1)n binary decision variables
and (2n + 1)K constraints. Note that K can be exponential in the number of
items, e.g. in the case of independently discretely distributed weights.

Although its structure is on the first sight similar to that of an MCKP ,
the deterministic reformulation of the TSKP contains negative rewards and
weights (for removed items). To the best of our knowledge the TSKP cannot
be equivalently reformulated as an MCKP (with strictly positive rewards and
non-negative weights).

As a simplified application of the TSKP consider an (online) travel agency
that aims to fill the vacant beds (the random capacity) of a hotel complex.
Clients are travel groups whose exact number of travelers (the ”weight” of the
group) is still unknown at the moment the decision which groups to accept has
to be made. The randomness of the groups’ sizes can for example be a result of
later cancellations, and the randomness in the number of beds to be filled can
be due to reservations by other agents or reparation works. If an upper bound
on the sizes of the travel groups is known, the probability space for the weights
is finite. In order to maximize the final occupancy of the beds, the travel agent
might allow an overbooking. If, in the end, the number of beds is not sufficient,
one or more of the groups need to be relocated in neighboring hotels which leads
to a loss of benefit. If beds are left unoccupied, last minute offers at reduced
prices might be an option to fill these vacancies. A simple recourse version of
this problem with a set of hotel sites has been previously considered in [1].

3 The ACO-Metaheuristic

In this section we will propose an ACO-metaheuristic to solve the TSKP . Nu-
merical results and comparisons of the considered variants are summarized in
section 4. We use the following notations:

– A: set of ants
– t: ”time”, i.e. passed number of construction steps in current iteration (t ≤ n)
– Sa(t): set of items chosen by ant a after time t
– τi(t): pheromone level on vertex/arc/edge i at time t
– ηi: utility ratio of item i
– νi: non-utility ratio of item i
– ρ ∈ (0, 1): global evaporation parameter
– ρloc ∈ (0, 1): local evaporation parameter
– pauv(t): transition probability = probability for ant a to go from vertex u to

vertex v at time t
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The basic structure of the ACO-algorithm for the TSKP is given in Algorithm
3.1. Its functioning is detailed in the following subsections. The Transition of

ants step consists of the transition of the ants following the transition probabil-
ities and the update of Sa(t).

IT ← 0
while IT < ITMAX do

IT ← IT + 1
Initialization

t← 0
while t < n and (∃ a ∈ A: (n+1) 6∈ Sa(t− 1)) do

t← t + 1
Computation of transition probabilities

Transition of ants

Local pheromone update

end while

Global pheromone update

end while

return Globally best solution

Algorithm 3.1: ACO-algorithm for the TSKP

3.1 The Complete Search Graph

Our search graph is based on the search graph proposed for the MCKP in [6]
and [14], i.e. on a complete graph whose n vertices represent the n items. Note
that the ants only construct the first-stage solution (solution vector x). In order
to model the randomness of the first item chosen by an ant, we add a starting
vertex to the complete graph. Initially, all ants are placed on this vertex.

In the case of the MCKP one has a natural certificate of when an ant has
come to an end of its solution construction: when either all items have been
chosen or when adding any of the remaining items would lead to the violation
of at least one of the constraints. As for the TSKP even adding all items in
the first stage would yield a feasible solution, we add a termination vertex n+ 1
which is connected to all other vertices, including the starting vertex.

3.2 Pheromone Trails and Update Procedure

Several choices could be made for the way pheromone is laid by the ants (see
[9]). In the simplest setting, the search graph is simple and non-directed and
pheromone is laid on vertices. In the second variant, pheromone is placed on the
edges of the simple, non-directed search graph, or, equivalently, pairs of items.
More precisely, if in a solution both items i and j are selected, pheromone is
increased on the edge (i, j) = (j, i) (and on all other edges of the clique defined
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by the chosen items). In the third variant the graph is assumed to be a complete
directed graph and pheromone is laid on arcs, i.e. directed edges. Contrary to
the two former settings, this setting does not only take into account which items
(or item pairs) had been added to former good solutions, but also in which order.
In the following, when talking of an element, this refers to either a vertex, edge
or arc of the search graph.

We use a local as well as a global update procedure. The local update pro-
cedure is performed after every construction step. The pheromone level on the
elements chosen by the ants during this step is slightly reduced, in order to
diversify the produced solutions. For an element i the local update rule is as
follows:

τi ← (1− ρloc) · τi + ρlocτmin (6)

Here τmin is a lower bound for the pheromone level. Note that no local update
is done during the first iteration, i.e. only the utility measures are taken into
account for the solutions constructed in the initial iteration.

The global update procedure is done once all ants have constructed their
solutions. In our setting we intensify the pheromone level on the elements of
the globally best solution (i.e., the best solution found so far) as well as on the
elements of the λ best solutions of the last iteration:

τi ← (1− ρ) · τi + ρ · f

fglob
(7)

Here f is the objective function value of the respective solution and fglob the
globally best solution value. Note that the maximum pheromone level is 1. If
after the global update procedure the pheromone level on an element lies below
a fixed lower bound τinit ≥ τmin, it is set to τinit. This means that, while the
pheromone level on certain elements might fall beneath τinit during the local
update procedure (but never below τmin), the level is at least τinit on all elements
at the beginning of each iteration.

Note that for λ = 0 only the pheromone on the elements of the globally best
solution is increased. We also tested implementations where only the pheromone
on the best solution(s) of the current iteration are considered. This variant,
however, showed less good convergence properties due to the apparently high
importance of exploitation when solving the TSKP with an ACO-algorithm
(see also section 4).

The here chosen update procedure (see also [5]) has turned out to be superior
to the previously tested, generally applied update procedure where pheromone
is evaporated on all items during the global update procedure (see [13]).

3.3 Heuristic Utility Measures

An advantage of the TSKP compared to the MCKP is that we have a clearly
defined ”relevance factor” for each knapsack constraint: the probability of the
corresponding scenario (see [10] for more information on utility measures for the
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MCKP ). Our idea is thus to compute the overall utility ratio of an item as
an average over the utility ratios of those scenarios where the item still fits the
capacity. The problem is, however, that once adding an item would lead to a
violation of the capacity in one or more scenarios, deciding whether it is more
profitable to remove an item and add the new one, or to discard the current
item, is NP-hard. We overcome this problem by relying on the chosen utility
measure: If the utility measure is chosen wisely, one might get good solutions by
always discarding the current item (in the case of an overload).

While in the case of the MCKP two factors have to be considered (reward
and weight), there are 2 more factors that play a role for the utility of an item
in the two-stage setting: the second-stage reward and the second-stage penalty.
This renders the definition of a good utility measure much more complex.

The utility ratio for the termination vertex should depend on the penalty we
would have to pay in the second stage if we add another item and/or the reward
we could gain in the second stage if we do not add any of the remaining items.
We thus compute an additional ”non-utility” ratio for each item. The utility
ratio of the termination vertex is then defined as the minimum over these ratios:
If for all items the non-utility ratio is high, termination might be the best choice.
Note that when it comes to removing items, items with a small penalty-weight
ratio might be more attractive.

We propose two different (non-)utility ratios. Both are calculated with re-
spect to the set Ki of scenarios where item i still fits in the knapsack. As usual,
the utility ratio of an item that had already be chosen by the respective ant is
defined to be zero.

Simple measure: Here we define the utility of an item i to be the ”average”
ratio of first-stage reward and weight.

ηSi =
∑
k∈Ki

pk
ri
χki

(8)

Note that this measure is not exactly the mean of the reward-weight ratios over
the scenarios where the item still fits as

∑
k∈Ki

pk < 1 is possible. The exact

mean would be obtained by dividing ηSi by
∑
k∈Ki

pk. The utility ratio does
thus increase with the probability that item i still fits the capacity (given by∑
k∈Ki

pk).
We define two non-utility ratios. For half of the ants the first measure is

applied and for the other half the second. The first non-utility ratio is defined to
be the ”average” ratio of second-stage penalty and weight over those instances
where the item does not fit in the knapsack any more. Contrary to the utility
ratio ηS , this first non-utility ratio increases with

∑
k 6∈Ki

pk. The second non-
utility ratio equals the reward we would gain on average in the second stage if
we do not add the item and assume that it can be added in any scenario in the
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second stage.

νS1
i =

∑
k 6∈Ki

pk
di
χki

νS2
i =

K∑
k=1

pk
ri
χki

(9)

Difference measure: We compare what we would gain by adding an item in
the first and not the second stage (ri−ri) with what we would loose if we would
have to remove the item in the second stage (di − ri):

ηDi =
∑
k∈Ki

pk
ri − ri
χki

νDi =
∑
k 6∈Ki

pk
di − ri
χki

(10)

3.4 Transition Probabilities

In this study we only consider the most traditional way of computing the tran-
sition probabilities from the pheromone level and utility ratio (see e.g. [15]):

pauv(t) =
ταi(u,v)(t)η

β
v∑n+1

w=1 τ
α
i(u,w)(t)η

β
w

(11)

Here α and β are two parameters that control the relative importance of pheromone
level and utility ratio and i(u, v) = v (vertex pheromone) or i(u, v) = (u, v) (arc
or edge pheromone). In case we use the simple measure, the utility ratio ηv of
an item v is computed using (8) while the utility ratio ηn+1 of the termination
vertex is computed as minv∈{1,...,n} ν

S1
v for half of the ants and minv∈{1,...,n} ν

S2
v

for the other half (see (9)). Similarly, if we decide to use the difference measure,
ηv is given by ηDv for an item v and ηn+1 = minv∈{1,...,n} ν

D
v (see (11)).

3.5 Decreasing the Computing Time

In order to decrease the computing time of the algorithm we only recompute
the objective function values for those newly constructed solutions that had not
been constructed by any ant so far. A binary tree was used as data structure
to store already computed solutions. This procedure turned out to be especially
efficient towards the end of the algorithm when generally a lot of ants reproduce
the best solution(s) found so far. Compared to a preliminary design where only
the globally best solution was not recomputed (see [13]) we were able to increase
the computing time by around 33%.

In our preliminary setting of the ACO-algorithm we used CPLEX in order
to evaluate the objective function while for the final implementation we chose to
use the Minknap algorithm implemented by D. Piesinger (see [19]) and presented
in [18]. This decreased the CPU time of the ACO-algorithm by another 90%.
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4 Numerical Tests

The ACO-algorithm has been implemented in C++ and the tests run on a Intel
Core 2 with 3GHz and 4GB RAM.

Our test instances were generated from MCKP test instances of the OR-
library. For the second-stage rewards (penalties) we uniformly generated a factor
on [0.95, 1] ([1, 1.1]) and multiplied it with the first-stage reward. The probabil-
ities of the scenarios have been independently generated.

After a first extensive test on an instance with 5 scenarios, only small changes
were made in the parameters for each number of scenarios and utility measure:
ρ and ρloc were always chosen as either 0.1, 0.3 or 0.5 and τmin and τinit on
[0.01, 0.1]. In case of pheromone on vertices or edges best results were achieved
with λ = 0, while in case of pheromone on arcs we always set λ = 3. While
the choice of these parameters is not surprising compared to other studies, the
choice of the parameters α and β is: most often, best results are obtained with
α = 1 and β taking an integer value strictly greater than 1 (see e.g. [9] or [14]).
Moreover, early stagnation was reported in several studies whenever the relative
importance of α was chosen too high (α > 1, see e.g. [16]). In our tests it turned
out that best results are achieved with β = 1 and α ∈ {20, 30, 40}, with α in-
creasing when K increases. For α ≤ 10 the algorithm did not converge even to a
local optimum and kept repeating solutions far from the optimum. On one hand
this reflects the aforementioned difficulty to define a suitable utility measure.
On the other hand it shows that the pheromone level plays an important role
and exploitation seems to be much more important to obtain good solutions
when solving the TSKP with an ACO-algorithm than it is when solving other
combinatorial problems.

When using the simple measure globally best solutions were found by both
ants that were using the first and ants using the second non-utility ratio.

4.1 Comparison of the 3 Different Variants to Lay Pheromone

For our algorithm placing pheromone on arcs showed much better results than
placing it on vertices or edges. More precisely, we observed during our tests that
in the latter two cases the ants had difficulties to reproduce the globally best
solution and to search in its local neighborhood. As a consequence, the solu-
tion value of the best solution produced during an iteration was mostly strictly
smaller than that of the the globally best solution. This caused severe problems
for the convergence of our ACO-algorithm. On the contrary, with pheromone on
arcs, the quality of the best solutions produced during a single iteration gener-
ally increased monotonically (however not strictly).

These observations can be explained as follows: In case of pheromone on arcs
pheromone will mainly be accumulated on a particular path. An ant that recon-
structs the globally best solution will probably do it by following this path. In
case of pheromone on vertices there are several possibilities to reconstruct the
globally best solution. Due to the accumulated pheromone an ant might choose
with high probability any of the items that are contained in the globally best
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solution as first (or next) vertex to go to. However, recall that both utility ratios
rely on the order in which the items have been chosen as this order defines for
the different scenarios which items still fit, and which do not. So assume that
the items chosen so far by an ant are all part of the globally best solution but
that the order in which they have been chosen is different. Then it is possible
that the utility of an item that is not part of the globally best solution has now a
much higher utility than the rest of the items. This explains also the superiority
of the variant where pheromone is laid on directed and not on indirected edges,
that could not be explained by the structure of the TSKP that does not take
the order in which the items are added into account.

Due to this preliminary observations further studies were only made with
pheromone on arcs.

4.2 Comparison of the 2 Different Utility Measures (pheromone on
arcs) and Performance Relative to CPLEX

For a representative comparison of the convergence behavior of ourACO-algorithm
using the two different measures see Figure 1 in [13]. The figure shows two prop-
erties that we noticed in most runs: First, that the solution found in the initial
iteration of the ACO-algorithm (where only the utility is taken into account) is
better when using the difference measure than when using the simple measure.
This can already be seen as a sign that the difference measure might be more
suited as utility measure for the TSKP . Second, one sees that the algorithm con-
verges much faster to near optimal solutions when using the difference measure
and the quality of the best solution produced per iteration never decreases even
when the globally best solution is already close to the optimum. It turned out
that this latter behavior generally indicates if the algorithm will, on the given
instance, find the optimal or at least a near optimal solution: On instances where
the algorithm is (repeatedly) not able to reconstruct the globally best solution
during several iterations, the solution returned by the algorithm is mostly of very
poor quality. This again shows that exploitation seems to play an important role
when solving the TSKP with a metaheuristic.

The numerical results of our tests are displayed in Table 4.2. The first row
gives the number of items n, the number of scenarios K and the tightness t (as
defined in [4]) of the MCKP instance used to construct the TSKP instance.
For each such triple, we randomly chose 3 instances that were especially hard
to be solved by CPLEX, i.e. where the CPU time exceeded 2 hours or were the
computation stops earlier due to lack of available memory space. On each in-
stance, we made 50 independent runs of our algorithm. The first row shows the
relative gap between the best solutions given by CPLEX and the greedy heuris-
tic that one obtains from the proposed ACO-Algorithm when setting α = 0. In
this randomized heuristic only the utility measure counts for the computation of
the transition probability. Note that in none of the runs the heuristic was able
to find the best solution given by CPLEX (or a better one). The second row
displays the number of instances where our algorithm was able to either find the
best solution given by CPLEX (after 2h) in at least one of the 50 runs, or an
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Table 1. Numerical results using the two different utility measures

Difference measure Simple measure

n-K-t Heuristic Succesf. Succesf. Average Time in Succesf. Average Time in
(rel. gap) instances runs rel. gap sec. runs rel. gap sec.

100-5-0.25 0.53 % 3/3 57 % 0.02 % 35 13 % 0.05 % 30

100-5-0.5 0.21 % 2/3 28 % 0.01 % 57 1 % 0.03 % 52

100-5-0.75 0.15 % 1/3 1 % 0.02 % 69 0 % 0.02 % 71

100-10-0.25 0.50 % 3/3 93 % 0.06 % 47 63 % 0.01 % 34

100-10-0.5 0.35 % 2/3 23 % 0.01 % 72 0 % 0.03 % 63

100-10-0.75 0.13 % 1/3 15 % 0.02 % 85 0 % 0.04 % 85

100-30-0.25 0.61 % 2/3 58 % 0.02 % 147 0 % 0.12 % 107

100-30-0.5 0.28 % 3/3 63 % 0.01 % 232 8 % 0.02 % 179

100-30-0.75 0.08 % 1/3 25 % 0.01 % 295 0 % 0.03 % 183

250-30-0.25 0.63 % 0/3 0 % 0.04 % 414 N/T N/T N/T

250-30-0.5 0.37 % 0/3 0 % 0.06 % 592 N/T N/T N/T

250-30-0.75 0.13 % 0/3 0 % 0.06 % 835 N/T N/T N/T

even better solution. For each utility measure, the first row gives the percentage
of runs where our algorithm found a solution as least as good as the best so-
lution given by CPLEX. The average relative gaps given in the second row are
computed only over those runs where the best solution found was worse than
that given by CPLEX. The third row contains the average CPU time in seconds.

Instances with 100 items: For K = 5 and K = 10 we used a number of
100 ants and a maximum number of iterations of 300, while, in order to obtain
good solutions for K = 30, the number of ants needed to be raised to 150.

The tests showed that, although the pheromone level can be very small due
to our parametrization, without the influence of the accumulated pheromone
the algorithm is unable to find the optimal solution and to obtain on average
similarly small relative gaps as. This is mainly due to the lack of exploration
when using the heuristic obtained by setting α = 0.

The table confirms the superiority of the difference utility measure over the
simple utility measure that has already been discussed above. The smaller run-
ning times in case of the simple measure are mainly due to the repetition of
sub-optimal solutions: As the objective function value for already found solu-
tions are not recomputed, the computing time needed is consequently smaller.

The increase of the running time with increasing number of scenarios is of
cause due to the increase in computation that needs to be done especially to
evaluate the objective function, i.e. to solve K knapsack problems.

Table 4.2 indicates that our algorithm has much more problems to find the
optimal solutions (or at least the same solution as CPLEX after 2 hours) of
instances with tightness 0.75 than of instances with tightness 0.25. This can be
explained in a simplified manner as follows: In each iteration the ants have to de-
cide whether to choose another item or to stop the construction. This decision is,
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among others, based on a greedy ordering of the items already in the knapsack,
and the more items added to the knapsack, the more ”inaccurate” the ordering
might become. Moreover, in a larger knapsack more items fit which means that
the randomized construction procedure takes longer, and is thus naturally more
susceptible to ”false decisions”. This clearly has an influence on the probability
to find the optimal solution. Note however, that the average relative gaps do not
significantly change with increasing tightness.

The longer construction times with higher tightness are also reflected in the
longer running times of the algorithm.

Our algorithm was able to produce for most of the instances the same solu-
tions as CPLEX, in much shorter running time. Moreover, the table shows that
with increasing K the performance of our algorithm improves relatively to the
performance of CPLEX. More precisely, as with increasing K CPLEX has more
difficulty to find the optimal solution in 2h running time, the percentage of runs
where our algorithm finds (in much less computing time) a solution equal or
better than CPLEX increases. Moreover, while for both K = 5 and K = 10 our
algorithm found for only one of nine instances a solution better than that given
by CPLEX, we were able to produce better solutions for 4 of the nine instances
with K = 30. Table 4.2 also shows, that the average relative gap between the
solution produced by CPLEX and the best solution found by our algorithm is
quite small (mostly between 0.02% and 0.01%), and does not significantly in-
crease with K.

Our algorithm was able to produce for most of the instances the same so-
lutions as CPLEX, in much shorter running time. Moreover, the table shows
that with increasing K the performance of our algorithm improves relatively
to the performance of CPLEX. More precisely, as with increasing K CPLEX
has more difficulty to find the optimal solution in 2h running time, the percent-
age of runs where our algorithm finds (in much less computing time) a solution
equal or better than CPLEX increases. Moreover, while for both K = 5 and
K = 10 our algorithm found for only one of nine instances a solution better
than that given by CPLEX, we were able to produce better solutions for four of
the nine instances with K = 30. Table 4.2 also shows, that the average relative
gap between the solution produced by CPLEX and the best solution found by
our algorithm is quite small (mostly between 0.02% and 0.01%), and does not
significantly increase with K.

Instances with 250 items: For instances with 250 items only the difference
measure was tested (N/T = not tested). Table 4.2 shows that our algorithm
already reaches its limit at this dimension concerning the CPU-time as well as
the availability to find optimal solutions. Although the average relative gaps are
still rather small, the algorithm was incapable of finding optimal solutions. Note
that we needed to decrease the number of ants to 50 and increase the maximum
number of iterations to 600 to obtain the shown results. This is clearly due to
the importance of exploitation as discussed above that leads to the inability
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of the algorithm to explore the much bigger solution space. To be able to solve
problems with higher number of items better utility ratios will clearly be needed.

5 Future Work

Our numerical tests have confirmed what one would naturally expect, i.e. that
the running time of the ACO-algorithm increases with the number of scenarios
K. For instances with a high number of scenarios sampling should thus be con-
sidered. This means that at each iteration a set of scenarios is sampled whose
cardinality is smaller than K. By increasing the number of sampled scenarios
during the iterations convergence might be achieved. Moreover, one obtains a
natural additional diversification of the produced solutions (see [3] for more de-
tails). However, the analysis of the algorithm would be completely different,
which is why we thought this approach out of scope for this primary study.

A possibility to decrease running time for higher number of items is to use
an approximate knapsack algorithm when evaluating the objective function, in-
stead of an exact one. Once again this would entail an additional diversification.

Our numerical tests have shown that the ACO-algorithm proposed in this
paper is able to produce, in much less computing time, solutions for instances of
100 items of similar quality as CPLEX in 2h. Moreover, with increasing number
of scenarios, our algorithm clearly outperforms CPLEX concerning both run-
ning time and solution quality. Although we think that an ACO-algorithm is a
natural choice to solve TSKP s (see introduction), the next step clearly consists
in comparing it with other metaheuristics. Results from this study such as the
difference measure might be useful for other algorithms as well.
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