Stochastic Optimization IDA PhD course 2011ht

Stefanie Kosuch

PostDok at TCSLab www.kosuch.eu/stefanie/

9. Lecture: Stochastic Decomposition 08. December 2011

- 1 Decomposition Methods
 - L-shaped method (Benders' decomposition)

- 2 Inner Approximation Approaches
 - Stochastic Decomposition

3 Complexity of Two-Stage Optimization problems

Outline

- 1 Decomposition Methods
 - L-shaped method (Benders' decomposition)
- 2 Inner Approximation Approaches
 - Stochastic Decomposition
- 3 Complexity of Two-Stage Optimization problems

Outline

- 1 Decomposition Methods
 - L-shaped method (Benders' decomposition)
- - Stochastic Decomposition
- 3 Complexity of Two-Stage Optimization problems

Linear Two-Stage Problem with fixed recourse

$$\min_{x \ge 0} c^T x + \mathbb{E}[Q(x, \chi)]$$
s.t. $Ax \ge b$,
$$Q(x, \chi) = \min_{y \ge 0} d^T y$$
s.t. $Wy > h(\chi) - T(\chi)x$.

 $x \in \mathbb{R}^{n_1}$: decision vector of 1^{st} stage

 $y \in \mathbb{R}^{n_2}$: decision vectors of 2^{nd} stage (recourse action)

 $\chi^1, \dots, \chi^K \in \mathbb{R}^s$: scenarios

 $\mathbb{P}\{\chi=\chi^k\}:=p^k$: probabilities

Linear Two-Stage Problem with fixed recourse

$$\min_{\substack{x \ge 0 \\ \theta \ge 0}} c^T x + \theta$$
s.t. $Ax \ge b$,
$$\theta \ge \mathbb{E}[Q(x, \chi)]$$

$$Q(x, \chi) = \min_{y \ge 0} d^T y$$
s.t. $Wy \ge h(\chi) - T(\chi)x$.

 $x \in \mathbb{R}^{n_1}$: decision vector of 1st stage $y \in \mathbb{R}^{n_2}$: decision vectors of 2nd stage (recourse action)

 $\chi^1, \dots, \chi^K \in \mathbb{R}^s$: scenarios

 $\mathbb{P}\{\chi=\chi^k\}:=p^k$: probabilities

L-shaped method (Benders' decomposition)

Basic Structure of L-shaped method

- 1) Solve current master problem
- 2) As long as second-stage problem infeasible: Add feasibility cuts to master problem.
- 3) If solution optimal: Stop.
 Otherwise: Add optimality cut to master problem. Go back to 1).

Current master problem

$$\begin{aligned} & \min_{x \ge 0} & c^T x + \theta \\ & \text{s.t.} & Ax \ge b. \\ & D_{\ell} x \ge d_{\ell} & (\ell = 1, \dots, r) \\ & G_{\ell} x + \theta \ge g_{\ell} & (\ell = 1, \dots, s) \end{aligned}$$

Basic Structure of L-shaped method

- 1) Solve current master problem
- 2) As long as second-stage problem infeasible: Add feasibility cuts to master problem.
- 3) If solution optimal: Stop.
 Otherwise: Add optimality cut to master problem. Go back to 1).

Optimality cut

Idea

Approximate $\theta \geq \mathbb{E}[\mathcal{Q}(x,\chi)]$ by linear inequalities

- $\mathbf{x}^{\nu}, \theta^{\nu}$: Optimal solution of master problem in iteration ν
- $\blacksquare \pi_{k}^{\nu}$: Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^{k})$

Optimality cut

$$\theta \geq \sum_{k=1}^K p^k (\pi_k^{\nu})^T (h(\chi^k) - T(\chi^k) x)$$

Feasibility cut

First:

Test feasibility of optimal solution of master problem by computing:

$$\begin{aligned} z_k &= \min \quad \mathbb{1}^T v_k^+ \\ \text{s.t.} &\quad W v_k + v_k^+ \geq h(\chi^k) - T(\chi^k) \mathbf{x}^{\nu}, \\ v_k, v_k^+ \geq 0. \end{aligned}$$

If
$$z_k = 0$$
:

 x^{ν} is 2.-s. feasible

Feasibility cut

First:

Test feasibility of optimal solution of master problem by computing:

$$z_k = \min \quad \mathbb{1}^T v_k^+$$

s.t. $Wv_k + v_k^+ \ge h(\chi^k) - T(\chi^k) x^{\nu},$
 $v_k, v_k^+ \ge 0.$ (5a)

If $z_k > 0$:

 x^{ν} is not 2.-s. feasible \Rightarrow Add feasibility cut

L-shaped method (Benders' decomposition)

Feasibility cut II

Theory

Consider dual:

$$0 < z_k = \max \quad \sigma^T(h(\chi^k) - T(\chi^k)x^{\nu})$$
s.t.
$$\sigma^T W \le 0,$$

$$\sigma \le 1.$$
 (6a)

 \bullet σ_k^{ν} : Optimal solution of above dual problem

Feasibility cut

$$\sigma_k^{\nu T}(h(\chi^k) - T(\chi^k)x) \leq 0$$

Linköping University

L-Shaped Algorithm

```
r, s, \nu \leftarrow 0
while 1 \neq 0 do
  \nu \leftarrow \nu + 1
  Solve Current Master Problem (CMP): \to x^{\nu}, \theta^{\nu}
  if x^{\nu} not 2.-s. feasible then
    Add feasibility cut (r \leftarrow r + 1)
    Go back: Resolve CMP
  end if
  Add optimality cut (s \leftarrow s + 1)
  if x^{\nu}, \theta^{\nu} satisfy optimality cut then
     STOP. x^{\nu} is optimal solution.
  else
    Go back: Resolve CMP
  end if
end while
```

Line onversity

L-shaped method (Benders' decomposition)

Results

- Only finitely many cuts needed to obtain feasibility
- BUT: Number can be large!
- HOWEVER: Feasibility cut has "deepest cut property"
- Algorithm stops after finitely many iterations

Outline

- 1 Decomposition Methods
 - L-shaped method (Benders' decomposition)
- 2 Inner Approximation Approaches
 - Stochastic Decomposition
- 3 Complexity of Two-Stage Optimization problems

Inner Approximation

- Randomized Solution Algorithm
- Sampling during solution process
- Either: Find good solution over iterations
- Or: Problem approximated over iterations
- Famous examples:
 - → Stochastic gradient algorithm (Stochastic approximation)
 - → Stochastic Decomposition

Outline

- 1 Decomposition Methods
 - L-shaped method (Benders' decomposition)
- 2 Inner Approximation Approaches
 - Stochastic Decomposition
- 3 Complexity of Two-Stage Optimization problems

Used in case where...

- ...underlying distribution is continuous.
- ...underlying discrete distribution intractable.
- ...SAA error bound too pessimistic.

Reference

Julia L. Higle and Suvrajeet Sen

Stochastic decomposition: An algorithm for two-stage linear programs with recourse.

Mathematics of Operations Research 16(3):650–669, 1991

Basic idea

- Basically: L-shaped method
- BUT: set of considered scenarios continuously extended
- ⇒ Cuts computed based on "incomplete" information
- \blacksquare \Rightarrow 2.-s. feasibility and optimality only with certain probability
- In each iteration: Only (exactly) solve 2.-s. problem for last added outcome

Problem considered in iteration ν

$$\min_{\substack{x \ge 0 \\ \theta \ge 0}} c^T x + \theta$$
s.t. $Ax \ge b$,
$$\theta \ge \sum_{k=1}^{\nu'} \frac{1}{\nu} \mathcal{Q}(x, \chi^k)$$

$$\mathcal{Q}(x, \chi) = \min_{y \ge 0} d^T y$$
s.t. $Wy \ge h(\chi) - T(\chi)x$.

 χ^k : sample from iteration k

Basic idea

- Basically: L-shaped method
- BUT: set of considered scenarios continuously extended
- ⇒ Cuts computed based on "incomplete" information
- \blacksquare \Rightarrow 2.-s. feasibility and optimality only with certain probability
- In each iteration: Only (exactly) solve 2.-s. problem for last added outcome

Definition

A two-stage stochastic programming problem has

relative complete recourse

if

- \forall feasible 1.-s. solutions $x \in \mathbb{R}^n$ and
- $\blacksquare \ \forall \ \hat{\chi} \in \Omega$
- ∃ a feasible 2.-s.-solution

In other words:

 $\forall x \in X \text{ and } \forall \hat{\chi} \in \Omega$:

- $\mathbb{Q}(x,\chi)<\infty.$
- \blacksquare x is 2.-s. feasible.
- $h(\hat{\chi}) T(\hat{\chi})x \in \text{pos}W(\hat{\chi}) := \{t | \exists y \ge 0 : W(\hat{\chi})y \ge t\}.$

-----ersity

Definition

A two-stage stochastic programming problem has

relative complete recourse

if

- lacktriangle \forall feasible 1.-s. solutions $x \in \mathbb{R}^n$ and
- $\forall \hat{\chi} \in \Omega$
- \exists a feasible 2.-s.-solution.

Consequently:

No feasibility cuts needed!

Assumptions

- Relatively complete recourse.
- Fixed recourse.
- $X \times \Omega$ is compact.
- Deterministic technology matrix.
- $\forall x \in X \ \mathcal{Q}(x,\chi) \geq 0 \ (\text{w.p.1})$

Optimality cut

In iteration ν (after master problem has been solved)

- Draw sample χ^{ν} of χ
- Solve 2.-s. problem: $(\rightarrow \pi^{\nu}_{\nu})$

$$\max_{\pi \geq 0} \quad \pi^T (h(\chi^{\nu}) - T(\chi^{\nu}) x^{\nu})$$

s.t.
$$\pi^T W \leq d$$
.

- Add π^{ν}_{ν} to list of solutions $(V^{\nu} \leftarrow V^{\nu-1} \cup \{\pi^{\nu}_{\nu}\})$
- $\forall k=1,\ldots,\nu-1 \text{ solve: } (\rightarrow \pi_k^{\nu},\ k=1,\ldots,\nu-1)$

$$\max_{\pi>0} \quad \pi^{T}(h(\chi^{k}) - T(\chi^{k})x^{\nu})$$

s.t.
$$\pi^T \in V^{\nu}$$
.

ersity

Optimality cut II

$$\tilde{\pi}_k := \underset{\pi \geq 0}{\operatorname{arg}} \max_{\pi \geq 0} \left\{ \pi^T (h(\chi^k) - T(\chi^k)x) | \quad \pi^T W \leq d \right\}$$

Theory

1)
$$Q(x,\chi^k) = \tilde{\pi}_k(h(\chi^k) - T(\chi^k)x) \ge \pi_k^{\nu}(h(\chi^k) - T(\chi^k)x)$$

2)

$$\theta \geq \frac{1}{\nu} \sum_{k=1}^{\nu} \mathcal{Q}(x, \chi^k) \quad \Rightarrow \quad \theta \geq \frac{1}{\nu} \sum_{k=1}^{\nu} \pi_k^{\nu} (h(\chi^k) - T(\chi^k) x)$$

New Optimality cut

$$\theta \geq \frac{1}{\nu} \sum_{k=1}^{\nu} \pi_k^{\nu} (h(\chi^k) - T(\chi^k) x)$$

ersity

Optimality cut III

$$\tilde{\pi}_k \quad := \quad \arg\max_{\pi \geq 0} \quad \{\pi^T (h(\chi^k) - T(\chi^k)x) | \quad \pi^T W \leq d\}$$

Needed

 $\forall \nu' > \nu$:

$$\theta \geq \frac{1}{\nu'} \sum_{k=1}^{\nu'} \mathcal{Q}(x, \chi^k) \quad \Rightarrow \quad \theta \geq \frac{1}{\nu} \sum_{k=1}^{\nu} \pi_k^{\nu} (h(\chi^k) - T(\chi^k) x)$$

Optimality cut III

$$\tilde{\pi}_k \quad := \quad \arg\max_{\pi \geq 0} \quad \{\pi^T (h(\chi^k) - T(\chi^k)x) | \quad \pi^T W \leq d\}$$

However...

$$\forall \nu' > \nu$$
:

$$\theta \geq \frac{1}{\nu'} \sum_{k=1}^{\nu'} \mathcal{Q}(x, \chi^k) \quad \not\Rightarrow \quad \theta \geq \frac{1}{\nu} \sum_{k=1}^{\nu} \pi_k^{\nu} (h(\chi^k) - T(\chi^k) x)$$

Optimality cut II

$$\tilde{\pi}_k := \underset{\pi \geq 0}{\operatorname{arg}} \max_{\pi \geq 0} \{\pi^T (h(\chi^k) - T(\chi^k)x) | \pi^T W \leq d\}$$

Theory

1)
$$Q(x,\chi^k) = \tilde{\pi}_k(h(\chi^k) - T(\chi^k)x) \ge \pi_k^{\nu}(h(\chi^k) - T(\chi^k)x)$$

2)

$$\theta \geq \frac{1}{\nu} \sum_{k=1}^{\nu} \mathcal{Q}(x, \chi^k) \quad \Rightarrow \quad \theta \geq \frac{1}{\nu} \sum_{k=1}^{\nu} \pi_k^{\nu} (h(\chi^k) - T(\chi^k)x)$$

New Optimality cut

$$heta \geq rac{1}{
u} \sum_{k=1}^{
u} \pi_k^{
u} (h(\chi^k) - \mathcal{T}(\chi^k) x)$$

ersity

Optimality cut III

$$\tilde{\pi}_k \quad := \quad \arg\max_{\pi \geq 0} \quad \{\pi^T (h(\chi^k) - T(\chi^k)x) | \quad \pi^T W \leq d\}$$

However...

 $\forall \nu' > \nu$:

$$\theta \geq \frac{1}{\nu'} \sum_{k=1}^{\nu'} \mathcal{Q}(x, \chi^k) \quad \Rightarrow \quad \theta \geq \frac{1}{\nu'} \sum_{k=1}^{\nu} \pi_k^{\nu} (h(\chi^k) - T(\chi^k) x)$$

Update existing optimality cuts..

... by multiplying right hand side by $\frac{\nu-1}{\nu}$ (in iteration ν).

Linköping University

Theorem (Consistency)

- $\{x^{\nu_n}\}_{n=1}^{\infty}$: infinite subsequence of $\{x^{\nu}\}_{\nu=1}^{\infty}$
- $x^{\nu_n} \to \hat{x}$

Then (w.p.1):

$$\frac{1}{\nu_n}\sum_{t=1}^{\nu_n}\pi_t^{\nu_n}(h(\chi^t)-T(\chi^t)x^{\nu_n})\to \mathbb{E}[\mathcal{Q}(\hat{x},\chi)]$$

Stochastic Decomposition

Theorem (Convergence)

$$\exists$$
 infinite subsequence $\{x^{\nu_n}\}_{n=1}^{\infty}$ of $\{x^{\nu}\}_{\nu=1}^{\infty}$

every accumulation point of $\{x^{\nu_n}\}_{n=1}^{\infty}$ is an optimal solution.

Problem

How to identify this subsequence?

Solution (Higle, Sen '91)

Take iterates whose estimated objective value is "sufficient low".

Outline

- 1 Decomposition Methods
 - L-shaped method (Benders' decomposition)
- 2 Inner Approximation Approaches
 - Stochastic Decomposition
- 3 Complexity of Two-Stage Optimization problems

Definition

- $\sharp P$: Counting problems associated with problems in NP
- #P-hard:
 Every problem in #P can be reduced to it

#P-hard problems

- "How many graph colorings using *k* colors are there for a particular graph G?"
- "How many perfect matchings are there for a given bipartite graph?"

 $\sharp P$ -hard problem solvable in pol. time $\Rightarrow P = NP$

Theorem (Dyer, Stougie 2003)

Linear Two-Stage Stochastic Programming with discretely distributed parameters is $\sharp P$ -hard.

Reference

Martin Dyer, Leen Stougie

Computational complexity of stochastic programming problems. (2003)

http://www.win.tue.nl/bs/spor/2003-20.pdf

Theorem (Dyer, Stougie 2003)

Linear Two-Stage Stochastic Programming with discretely distributed parameters is $\sharp P$ -hard.

Proof

Reduction from **Graph reliability problem**:

Given:

- Directed graph G = (V, E) with random edges
- $\forall e \in E \colon \mathbb{P}\{e \in E\} = \frac{1}{2}$
- $u, v \in V$

Compute:

 $\mathbb{P}\{\exists u \text{-v-path in } G\}$

Theorem (Dyer, Stougie 2003)

Linear Two-Stage Stochastic Programming with continuously distributed parameters is #P-hard.

Reference

Martin Dyer, Leen Stougie

Computational complexity of stochastic programming problems. (2003)

http://www.win.tue.nl/bs/spor/2003-20.pdf

QUESTIONS?

What about next week?

