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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Linear Two-Stage Problem with fixed recourse

min
x≥0

cT x + E[Q(x , χ)]

s.t. Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. Wy ≥ h(χ)− T (χ)x .

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)
χ1, . . . , χK ∈ Rs : scenarios
P{χ = χk} := pk : probabilities
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Basic Structure of L-shaped method

1) Solve current master problem

2) As long as second-stage problem infeasible:
Add feasibility cuts to master problem.

3) If solution optimal: Stop.
Otherwise: Add optimality cut to master problem. Go back to 1).
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Current master problem

min
x≥0

cT x + θ

s.t. Ax ≥ b.

D`x ≥ d` (` = 1, . . . , r)

G`x + θ ≥ g` (` = 1, . . . , s)
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Optimality cut

Idea

Approximate θ ≥ E[Q(x , χ)] by linear inequalities

xν , θν : Optimal solution of master problem in iteration ν

πνk : Optimal solution of dual of Q(xν , χk)

Optimality cut

θ ≥
K∑

k=1

pk(πνk )T (h(χk)− T (χk)x)

Stefanie Kosuch Stochastic Optimization 9/37



Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Optimality cut

Idea

Approximate θ ≥ E[Q(x , χ)] by linear inequalities

xν , θν : Optimal solution of master problem in iteration ν

πνk : Optimal solution of dual of Q(xν , χk)

Optimality cut

θ ≥
K∑

k=1

pk(πνk )T (h(χk)− T (χk)x)

Stefanie Kosuch Stochastic Optimization 9/37



Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Optimality cut

Idea

Approximate θ ≥ E[Q(x , χ)] by linear inequalities

xν , θν : Optimal solution of master problem in iteration ν

πνk : Optimal solution of dual of Q(xν , χk)

Optimality cut

θ ≥
K∑

k=1

pk(πνk )T (h(χk)− T (χk)x)

Stefanie Kosuch Stochastic Optimization 9/37



Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Optimality cut

Idea

Approximate θ ≥ E[Q(x , χ)] by linear inequalities

xν , θν : Optimal solution of master problem in iteration ν

πνk : Optimal solution of dual of Q(xν , χk)

Optimality cut

θ ≥
K∑

k=1

pk(πνk )T (h(χk)− T (χk)x)

Stefanie Kosuch Stochastic Optimization 9/37



Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Optimality cut

Idea

Approximate θ ≥ E[Q(x , χ)] by linear inequalities

xν , θν : Optimal solution of master problem in iteration ν

πνk : Optimal solution of dual of Q(xν , χk)

Optimality cut

θ ≥
K∑

k=1

pk(πνk )T (h(χk)− T (χk)x)

Stefanie Kosuch Stochastic Optimization 9/37



Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Optimality cut

Idea

Approximate θ ≥ E[Q(x , χ)] by linear inequalities

xν , θν : Optimal solution of master problem in iteration ν

πνk : Optimal solution of dual of Q(xν , χk)

Optimality cut

θ ≥
K∑

k=1

pk(πνk )T (h(χk)− T (χk)x)

Stefanie Kosuch Stochastic Optimization 9/37



Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Feasibility cut

First:

Test feasibility of optimal solution of master problem by computing:

zk = min 1T v+
k

s.t. Wvk + v+
k ≥ h(χk)− T (χk)xν ,

vk , v
+
k ≥ 0.

If zk = 0:

xν is 2.-s. feasible
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Feasibility cut II

Theory

Consider dual:

0 < zk = max σT (h(χk)− T (χk)xν)

s.t. σTW ≤ 0,

σ ≤ 1. (5a)

σνk : Optimal solution of above dual problem

Feasibility cut

σνk
T (h(χk)− T (χk)x) ≤ 0
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

L-Shaped Algorithm

r , s, ν ← 0
while 1 6= 0 do

ν ← ν + 1
Solve Current Master Problem (CMP)

min
x≥0

cT x + θ

s.t. Ax ≥ b.

D`x ≥ d` (` = 1, . . . , r)

G`x + θ ≥ g` (` = 1, . . . , s)

end while
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Decomposition Methods

L-shaped method (Benders’ decomposition)

L-Shaped Algorithm

r , s, ν ← 0
while 1 6= 0 do

ν ← ν + 1
Solve Current Master Problem (CMP) → xν, θν

if xν not 2.-s. feasible then

Add feasibility cut (r ← r + 1)
Go back: Resolve CMP

end if

Add optimality cut (s ← s + 1)
if xν , θν satisfy optimality cut then

STOP. xν is optimal solution.

else

Go back: Resolve CMP

end if

end while
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Results

Only finitely many cuts needed to obtain feasibility

BUT: Number can be large!

HOWEVER: Feasibility cut has ”deepest cut property”

Algorithm stops after finitely many iterations
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Stochastic Optimization

Inner Approximation Approaches

Inner Approximation

Randomized Solution Algorithm

Sampling during solution process

Either: Find good solution over iterations

Or: Problem approximated over iterations

Famous examples:

→ Stochastic gradient algorithm (Stochastic approximation)
→ Stochastic Decomposition
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Stochastic Optimization

Inner Approximation Approaches

Stochastic Decomposition

Used in case where...

...underlying distribution is continuous.

...underlying discrete distribution intractable.

...SAA error bound too pessimistic.

Reference

Julia L. Higle and Suvrajeet Sen
Stochastic decomposition: An algorithm for two-stage linear
programs with recourse.
Mathematics of Operations Research 16(3):650–669, 1991
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Basic idea

Basically: L-shaped method

BUT: set of considered scenarios continuously extended

⇒ Cuts computed based on ”incomplete” information

⇒ 2.-s. feasibility and optimality only with certain probability

In each iteration: Only (exactly) solve 2.-s. problem for last added
outcome
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Stochastic Optimization

Inner Approximation Approaches

Stochastic Decomposition

Problem considered in iteration ν

min
x≥0
θ≥0

cT x + θ

s.t. Ax ≥ b,

θ ≥ E[Q(x , χ)]

Q(x , χ) = min
y≥0

dT y

s.t. Wy ≥ h(χ)− T (χ)x .

χk : sample from iteration k
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Stochastic Optimization

Inner Approximation Approaches

Stochastic Decomposition

Definition

A two-stage stochastic programming problem has

relative complete recourse

if

∀ feasible 1.-s. solutions x ∈ Rn and

∀ χ̂ ∈ Ω

∃ a feasible 2.-s.-solution.

In other words:

∀ x ∈ X and ∀ χ̂ ∈ Ω:

Q(x , χ) <∞.

x is 2.-s. feasible.

h(χ̂)− T (χ̂)x ∈ posW (χ̂) := {t|∃y ≥ 0 : W (χ̂)y ≥ t}.
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Definition

A two-stage stochastic programming problem has

relative complete recourse

if

∀ feasible 1.-s. solutions x ∈ Rn and

∀ χ̂ ∈ Ω

∃ a feasible 2.-s.-solution.
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No feasibility cuts needed!
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Stochastic Optimization

Inner Approximation Approaches

Stochastic Decomposition

Assumptions

Relatively complete recourse.

Fixed recourse.

X × Ω is compact.

Deterministic technology matrix.

∀x ∈ X Q(x , χ) ≥ 0 (w.p.1)
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Stochastic Optimization

Inner Approximation Approaches

Stochastic Decomposition

Optimality cut

In iteration ν (after master problem has been solved)

Draw sample χν of χ

Solve 2.-s. problem:

(→ πνν )

max
π≥0

πT (h(χν)− T (χν)xν)

s.t. πTW ≤ d .

Add πνν to list of solutions (V ν ← V ν−1 ∪ {πνν})
∀k = 1, . . . , ν − 1 solve:

(→ πνk , k = 1, . . . , ν − 1)

max
π≥0

πT (h(χk)− T (χk)xν)

s.t. πT ∈ V ν .
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Stochastic Optimization

Inner Approximation Approaches

Stochastic Decomposition

Optimality cut II

π̃k := arg max
π≥0

{πT (h(χk)− T (χk)x)| πTW ≤ d}

Theory

1) Q(x , χk) = π̃k(h(χk)− T (χk)x) ≥ πνk (h(χk)− T (χk)x)

2)

θ ≥ 1

ν

ν∑
k=1

Q(x , χk) ⇒ θ ≥ 1

ν

ν∑
k=1

πνk (h(χk)− T (χk)x)

New Optimality cut

θ ≥ 1

ν

ν∑
k=1

πνk (h(χk)− T (χk)x)
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Stochastic Optimization

Inner Approximation Approaches

Stochastic Decomposition

Optimality cut III

π̃k := arg max
π≥0

{πT (h(χk)− T (χk)x)| πTW ≤ d}

Needed

∀ν′ > ν:

θ ≥ 1

ν′

ν′∑
k=1

Q(x , χk) ⇒ θ ≥ 1

ν

ν∑
k=1

πνk (h(χk)− T (χk)x)

Update existing optimality cuts...

... by multiplying right hand side by ν−1
ν (in iteration ν).
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Stochastic Optimization

Inner Approximation Approaches

Stochastic Decomposition

Optimality cut III

π̃k := arg max
π≥0

{πT (h(χk)− T (χk)x)| πTW ≤ d}

Needed

∀ν′ > ν:

θ ≥ 1

ν′

ν′∑
k=1

Q(x , χk) ⇒ θ ≥ 1

ν

ν∑
k=1

πνk (h(χk)− T (χk)x)

Update existing optimality cuts...

... by multiplying right hand side by ν−1
ν (in iteration ν).

Stefanie Kosuch Stochastic Optimization 27/37



Stochastic Optimization

Inner Approximation Approaches

Stochastic Decomposition

Optimality cut III

π̃k := arg max
π≥0

{πT (h(χk)− T (χk)x)| πTW ≤ d}

However...

∀ν′ > ν:

θ ≥ 1

ν′

ν′∑
k=1

Q(x , χk) 6⇒ θ ≥ 1

ν

ν∑
k=1

πνk (h(χk)− T (χk)x)

Update existing optimality cuts...

... by multiplying right hand side by ν−1
ν (in iteration ν).

Stefanie Kosuch Stochastic Optimization 27/37



Stochastic Optimization

Inner Approximation Approaches

Stochastic Decomposition

Optimality cut III

π̃k := arg max
π≥0

{πT (h(χk)− T (χk)x)| πTW ≤ d}

However...

∀ν′ > ν:

θ ≥ 1

ν′

ν′∑
k=1

Q(x , χk) ⇒ θ ≥ 1

ν′

ν∑
k=1

πνk (h(χk)− T (χk)x)

Update existing optimality cuts...

... by multiplying right hand side by ν−1
ν (in iteration ν).

Stefanie Kosuch Stochastic Optimization 27/37



Stochastic Optimization

Inner Approximation Approaches

Stochastic Decomposition

Optimality cut II

π̃k := arg max
π≥0

{πT (h(χk)− T (χk)x)| πTW ≤ d}

Theory

1) Q(x , χk) = π̃k(h(χk)− T (χk)x) ≥ πνk (h(χk)− T (χk)x)

2)

θ ≥ 1

ν

ν∑
k=1

Q(x , χk) ⇒ θ ≥ 1

ν

ν∑
k=1

πνk (h(χk)− T (χk)x)

New Optimality cut

θ ≥ 1

ν

ν∑
k=1

πνk (h(χk)− T (χk)x)
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Stochastic Decomposition

Optimality cut III

π̃k := arg max
π≥0

{πT (h(χk)− T (χk)x)| πTW ≤ d}

However...

∀ν′ > ν:

θ ≥ 1

ν′

ν′∑
k=1

Q(x , χk) ⇒ θ ≥ 1

ν′

ν∑
k=1

πνk (h(χk)− T (χk)x)

Update existing optimality cuts...

... by multiplying right hand side by ν−1
ν (in iteration ν).
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Stochastic Decomposition

Optimality cut III
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Stochastic Optimization

Inner Approximation Approaches

Stochastic Decomposition

Theorem (Consistency)

{xνn}∞n=1: infinite subsequence of {xν}∞ν=1

xνn → x̂

Then (w.p.1):

1

νn

νn∑
t=1

πνnt (h(χt)− T (χt)xνn)→ E[Q(x̂ , χ)]
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Stochastic Optimization

Inner Approximation Approaches

Stochastic Decomposition

Theorem (Convergence)

∃ infinite subsequence {xνn}∞n=1 of {xν}∞ν=1

s.t. (w.p.1)

every accumulation point of {xνn}∞n=1 is an optimal solution.

Problem

How to identify this subsequence?

Solution (Higle, Sen ’91)

Take iterates whose estimated objective value is ”sufficient low”.
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Stochastic Optimization

Complexity of Two-Stage Optimization problems

Outline

1 Decomposition Methods
L-shaped method (Benders’ decomposition)

2 Inner Approximation Approaches
Stochastic Decomposition

3 Complexity of Two-Stage Optimization problems
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Stochastic Optimization

Complexity of Two-Stage Optimization problems

Definition

- ]P: Counting problems associated with problems in NP

- ]P-hard:
Every problem in ]P can be reduced to it

]P-hard problems

”How many graph colorings using k colors are there for a particular
graph G?”

”How many perfect matchings are there for a given bipartite graph?”

]P-hard problem solvable in pol. time ⇒ P = NP
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Stochastic Optimization

Complexity of Two-Stage Optimization problems

Theorem (Dyer, Stougie 2003)

Linear Two-Stage Stochastic Programming with discretely distributed
parameters is ]P-hard.

Reference

Martin Dyer, Leen Stougie
Computational complexity of stochastic programming
problems. (2003)
http://www.win.tue.nl/bs/spor/2003-20.pdf
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Stochastic Optimization

Complexity of Two-Stage Optimization problems

Theorem (Dyer, Stougie 2003)

Linear Two-Stage Stochastic Programming with discretely distributed
parameters is ]P-hard.

Proof

Reduction from Graph reliability problem:
Given:

Directed graph G = (V ,E ) with random edges

∀e ∈ E : P{e ∈ E} = 1
2

u, v ∈ V

Compute:
P{∃ u-v-path in G}
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Stochastic Optimization

Complexity of Two-Stage Optimization problems

Theorem (Dyer, Stougie 2003)

Linear Two-Stage Stochastic Programming with continuously
distributed parameters is ]P-hard.

Reference

Martin Dyer, Leen Stougie
Computational complexity of stochastic programming
problems. (2003)
http://www.win.tue.nl/bs/spor/2003-20.pdf
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Theorem (Dyer, Stougie 2003)
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distributed parameters is ]P-hard.
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QUESTIONS?

What about next week?
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