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L-shaped method (Benders' decomposition)

Linear Two-Stage Problem with fixed recourse

: T
minfie S| Obobd)]

s.t.  Ax > b,

g T
Q(X,x)—rynzlg d'y

st Wy > h(x) — T()x.

x € R™M: decision vector of 1 stage

y € R™: decision vectors of 2" stage (recourse action)
XY, .. x5 € R®: scenarios

P{x = x} := p*: probabilities
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m>ig c"x + E[Q(x, X)]
;(Eo
s.t.  Ax > b,

0 > E[Q(x, x)]

-
(x,x) = m>|g d'y
st. Wy > h(x) — T(x)x.

x € R™: decision vector of 1 stage
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Linear Two-Stage Problem with fixed recourse

min c'x+0
x>0
6>0
s.t.  Ax > b,
0 > E[Q(x, x)]

;
Qx,x) = oy &%y

st. Wy > h(x) — T()x.

x € R™: decision vector of 1 stage

y € R™: decision vectors of 2" stage (recourse action)
x5, .., xK € Re: scenarios

P{x = x¥} := p*: probabilities
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Linear Two-Stage Problem with fixed recourse

min ¢’ x+6
x>0
0>0
s.t.  Ax > b,

6 > E[Q(x, X)]

-
(x,x) = m>|g d'y
st. Wy > h(x) — T()x.

x € R™: decision vector of 1 stage

y € R™: decision vectors of 2" stage (recourse action)
x5, .., xK € Re: scenarios
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L-shaped method (Benders' decomposition)

Current master problem

min c'x+6
x>0
s.t. Ax > b.

DZXZ dg (f:l,...,r)

Gx+0>g (£L=1,...,s)
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- Decomposition Methods

L-shaped method (Benders' decomposition)

Basic Structure of L-shaped method
1) Solve current master problem
2) As long as second-stage problem infeasible:
Add feasibility cuts to master problem.
3) If solution optimal: Stop.
Otherwise: Add optimality cut to master problem. Go back to 1).
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Optimality cut

Idea
Approximate 6 > E[Q(x, x)] by linear inequalities

m x”,0"”: Optimal solution of master problem in iteration v

m 7: Optimal solution of dual of Q(x”, x*)

Optimality cut

0> p(ap) T (h(x*) — T(x*)x)

-
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Feasibility cut

First:

Test feasibility of optimal solution of master problem by computing

Z), = min ]lTvk+

st Wy + v > h(x¥) — T(x*)x",
Vi, v;r > 0.
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Test feasibility of optimal solution of master problem by computing
Z), = min ]lTvk+
st Wy + v > h(x¥) — T(x*)x",
Vi, v;r > 0.
If z. = 0:
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Feasibility cut

First:

Test feasibility of optimal solution of master problem by computing

Z) = min ]lTv;r

st Ww+ v > h(x¥) — T(xX*)x",
Vi, vii > 0. (4a)
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L-shaped method (Benders' decomposition)

Feasibility cut

First:

Test feasibility of optimal solution of master problem by computing:
Z) = min ]lTv;r
st Ww+ v > h(x¥) — T(xX*)x",
Vi, vk+ > 0.

If z, > 0:

x¥ is not 2.-s. feasible = Add feasibility cut

A
¢
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Theory

Consider dual:
0<zy=max o' (h(x*)— T(x*)x")

st. o'W< 0,
o <1. (5a)
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Stochastic Optimization

- Decomposition Methods

L-shaped method (Benders' decomposition)

Results
m Only finitely many cuts needed to obtain feasibility
m BUT: Number can be large!
m HOWEVER: Feasibility cut has " deepest cut property”
m Algorithm stops after finitely many iterations
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Inner Approximation
m Randomized Solution Algorithm
m Sampling during solution process
m Either: Find good solution over iterations
m Or: Problem approximated over iterations
m Famous examples:

— Stochastic gradient algorithm (Stochastic approximation)
— Stochastic Decomposition
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l7|nner Approximation Approaches

Stochastic Decomposition

Used in case where...
m ...underlying distribution is continuous.
m ...underlying discrete distribution intractable.

m ...SAA error bound too pessimistic.

Reference

[4 Julia L. Higle and Suvrajeet Sen
Stochastic decomposition: An algorithm for two-stage linear
programs with recourse.
Mathematics of Operations Research 16(3):650-669, 1991
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Problem considered in iteration v

mig c"x+0
)e(Eo
st. Ax> b,
0 > E[Q(x, X)]
— R T
Qx,x) = iy d'y

st. Wy > h(x) — T(x)x
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Stochastic Decomposition

Problem considered in iteration v

min c'x+6
x>0
6>0

st. Ax> b,
6 > i: lQ(x x5
Gt ’

o T
Q(x,x)—rynzlg d'y

st Wy > h(x) — T(x)x.
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Stochastic Decomposition

Problem considered in iteration v

min c'x+6
x>0
6>0

st. Ax> b,
0> 3 Lo v
- l/ b
k=1
N T
Qx,x) = iy &'y
st Wy > h(x) — T(x)x.

x*: sample from iteration k
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l7|nner Approximation Approaches

Stochastic Decomposition

Basic idea
m Basically: L-shaped method
m BUT: set of considered scenarios continuously extended
m = Cuts computed based on "incomplete” information
m = 2.-s. feasibility and optimality only with certain probability

m In each iteration: Only (exactly) solve 2.-s. problem for last added
outcome J
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Definition
A two-stage stochastic programming problem has

relative complete recourse

if
m V feasible 1.-s. solutions x € R" and
mVYyeQ

3 a feasible 2.-s.-solution.
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Stochastic Decomposition

Definition
A two-stage stochastic programming problem has
relative complete recourse
if
m V feasible 1.-s. solutions x € R" and
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3 a feasible 2.-s.-solution.
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Definition
A two-stage stochastic programming problem has
relative complete recourse
if
m V feasible 1.-s. solutions x € R" and

mvYyxe
3 a feasible 2.-s.-solution.

Consequently:

No feasibility cuts needed!
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Stochastic Decomposition

Assumptions
m Relatively complete recourse.

Fixed recourse.

5 | -

[
m X x Q is compact.

|

mVx € X O(x,x) >0 (w.p.l)
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1l z k I - v k k
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Stochastic Decomposition

Optimality cut Il

fi = argmax {x7(h(x) - T()x)| «"W < d}

However...
Y > v
’

1« IS v
0> 23 Q) = 0223 mi(h(x) - T())
k=1 L=

Update existing optimality cuts...

... by multiplying right hand side by ”Tfl (in iteration v).
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Theorem (Consistency)
m {x""}2,: infinite subsequence of {x"}%2
B X" — X

Then (w.p.1):

LS min(h(x) — T(x)x) = BIQ(S, )]
=1
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Theorem (Convergence)

3 infinite subsequence {x*"}°°, of {x"}2,
s.t. (w.p.1)

every accumulation point of {x"}°°, is an optimal solution.

Problem

How to identify this subsequence?

\

Solution (Higle, Sen '91)

Take iterates whose estimated objective value is " sufficient low" .
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Definition
- #P: Counting problems associated with problems in NP

- f#P-hard:
Every problem in #P can be reduced to it

fP-hard problems

m "How many graph colorings using k colors are there for a particular
graph G?”
m "How many perfect matchings are there for a given bipartite graph?”

gP-hard problem solvable in pol. time = P = NP J
Ko
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Theorem (Dyer, Stougie 2003)

Linear Two-Stage Stochastic Programming with discretely distributed
parameters is §P-hard.

Proof

Reduction from Graph reliability problem:
Given:

m Directed graph G = (V, E) with random edges
mVec E: Plec E} =3
muvevV

Compute:

P{3 u-v-path in G}
o
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distributed parameters is §P-hard.
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@ Martin Dyer, Leen Stougie
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