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Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Stochastic Programming Model → Deterministic Equivalent Model

min
x∈X

E[f (x , χ)]

χ ∈ Ω ⊆ Rs : random vector

SAA−−→
min
x∈X

1

N

N∑
k=1

f (x , χk)

χ1, . . . , χN : random sample

Main Result

Under some mild (technical) assumptions:

∀ε > 0:

P{distA(x̂N) ≤ ε} increases exponentially with N
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Stochastic Optimization

Outer and Inner Approximation Approaches

Stochastic Gradient method

Basic Idea

Basically: Gradient method

At each iteration: Sample random parameters

Compute new solution based on this sample

Use gradient of function inside expectation

Hopefully:

1) xk → x∗ as k →∞ w.h.p.
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Stochastic Optimization

Outer and Inner Approximation Approaches

Stochastic Gradient method

Problem type (mostly)

min E[f (x , χ)]

s.t. x ∈ X

Where:

X independent of distribution of random vector

X convex set

f (·, χ) convex

f (·, χ) differentiable (nearly everywhere)
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Stochastic Optimization

Outer and Inner Approximation Approaches

Stochastic Gradient method

rk = ∇x f (x , χk)

(εk)k∈N is a σ-sequence

Stochastic Gradient Algorithm

k ← 0
Choose x0 in X
while k < Kmax do

k ← k + 1
Draw χk = (χk

1 , ..., χ
k
n)

Update xk as follows:

xk+1 ← xk + εk rk

Project xk+1 on X
end while

return Best found or last solution
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Stochastic Optimization

Outer and Inner Approximation Approaches

Stochastic Gradient method

Assumptions

1) ∀x ∈ X : f (x , χ) is a random variable with finite expectation

2) ∀χ ∈ Ω: f (·, χ) is convex, proper, differentiable

3) ∃m > 0 s.t.
∀x ∈ X ,∀χ ∈ Ω : ‖∇x f (x , χ)‖ ≤ m

4) ∃ set of optimal solutions X ∗ and c > 0 s.t.:

∀x ∈ X , x∗ ∈ X ∗ : E[f (x , χ)]− E[f (x∗, χ)] ≥ c · (distX∗(x))2

Theorem

Under assumptions 1) - 4) we have:

lim
k→∞

E
[
(distX∗(xk))2

]
= 0
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Theorem

Let d0 = (distX∗(x0))2 and εk = 1

ck+ m2

cd0

.

Under assumptions 1) - 4) we have:

E
[
(distX∗(xk))2

]
≤ 1

c2

m2 k + 1
d0
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A bit of History

George Dantzig and Philip Wolfe
Decomposition principle for linear programs.
Operations Research 8(1):101–111, 1960

George Dantzig and Albert Madansky
On the solution of two-stage linear programs under
uncertainty.
Proc. 4th Berkeley Symposium on Mathematical Statistics and
Probability 1:165–176, 1961

Solution method for linear problems of special structure

Applicable to dual of Linear Two-Stage Problem with fixed recourse
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Stochastic Optimization

Decomposition Methods

A bit of History

Theorem

Given: linear two-stage problem
Let:

fixed recourse

{λ ∈ Rm2 : d ≥ λW } 6= ∅
(→ second-stage problem primal and dual feasible)

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

sub-differentiable in x.
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A bit of History

Richard Van Slyke and Roger J-B. Wets
L-shaped linear programs with applications to optimal control
and stochastic programming.
MSIAM Journal on Applied Mathematics 17(4):638–663, 1969

Solution method that makes use of special problem structures

Reduced computing time

Restriction to problems with random right hand side

Extension to fixed recourse possible
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A bit of History

John R. Birge and Franois V. Louveaux
A multicut algorithm for two-stage stochastic linear programs.
European Journal of Operational Research 34(3):384–392, 1988

Modification of L-shaped method

Add several cuts per iteration

Advantage: Less iterations needed

Disadvantage: Size of subproblems might slow algorithm down
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Decomposition Methods

A bit of History

Andrzej Ruszczyński
Regularized decomposition of stochastic programs:
Algorithmic techniques and numerical results.
Technical Report WP-93-21, International Institute for Applied
Systems Analysis (IIASA), Austria 1993

Aim: Reduce size of master problem

Idea: Regularize step size

Advantage: Reduced number of iterations due to stabilizing effect

Result: At most n1 + 2K cuts need to be stored
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Regularized decomposition of stochastic programs:
Algorithmic techniques and numerical results.
Technical Report WP-93-21, International Institute for Applied
Systems Analysis (IIASA), Austria 1993

Aim: Reduce size of master problem

Idea: Regularize step size

Advantage: Reduced number of iterations due to stabilizing effect

Result: At most n1 + 2K cuts need to be stored

Stefanie Kosuch Stochastic Optimization 22/43



Stochastic Optimization

Decomposition Methods

Dantzig-Wolfe Decomposition

Outline

1 Outer and Inner Approximation Approaches
Sample Average Approximation
Stochastic Gradient method

2 Decomposition Methods
A bit of History
Dantzig-Wolfe Decomposition
L-shaped method (Benders’ decomposition)

Stefanie Kosuch Stochastic Optimization 23/43



Stochastic Optimization

Decomposition Methods

Dantzig-Wolfe Decomposition

Constraint Matrix type:
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Decomposition Methods

Dantzig-Wolfe Decomposition

Dantzig-Wolfe Decomposition and Stochastic Programming

Dantzig-Wolfe Decomposition method
to solve dual of

Linear Two-Stage problems with fixed recourse.
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Linear Two-Stage Problem with fixed recourse

min
x≥0

cT x + E[Q(x , χ)]

s.t. Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x + Wy ≥ h(χ).

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)

χ1, . . . , χK ∈ Rs : scenarios
P{χ = χk} := pk : probabilities
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Idea

Start by solving:

min
x≥0

cT x

s.t. Ax ≥ b.

Then:

Iteratively add valid cuts (constraints) to the problem

Ensure that optimal solution of master problem...

...”renders” 2.-s. problem feasible (2.-s. feasible)

→ Feasibility cut

.

...is optimal for original problem

→ Optimality cut

.
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Basic Structure of L-shaped method

1) Solve current master problem

2) As long as second-stage problem infeasible:
Add feasibility cuts to master problem.

3) If solution optimal: Stop.
Otherwise: Add optimality cut to master problem. Go back to 1).
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Current master problem

min
x≥0

cT x + θ

s.t. Ax ≥ b.

D`x ≥ d` (` = 1, . . . , r)

G`x + θ ≥ g` (` = 1, . . . , s)
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Optimality cut

Idea

Approximate θ ≥ E[Q(x , χ)] by linear inequalities

Use: Dual of second-stage problem

max
π≥0

πT (h(χ)− T (χ)x)

s.t. πTW ≤ d .
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L-shaped method (Benders’ decomposition)

Linear Two-Stage Problem with fixed recourse

min
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Optimality cut II

xν , θν : Optimal solution of master problem in iteration ν

πνk : Optimal solution of dual of Q(xν , χk)

Theory

By Duality:
Q(xν , χk) = (πνk )T (h(χk)− T (χk)xν)

∀ 2.-s. feasible x ∃πk s.t.:

Q(x , χk) = (πk)T (h(χk)− T (χk)x)

By optimality of πk :

(πk)T (h(χk)− T (χk)x)
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∀ 2.-s. feasible x ∃πk s.t.:

Q(x , χk) = (πk)T (h(χk)− T (χk)x)

By optimality of πk
a:

(πk)T (h(χk)− T (χk)x) ≥ (πνk )T (h(χk)− T (χk)x)

aUsed: Feasible set of 2.-s. dual independent of x
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Optimality cut II

xν , θν : Optimal solution of master problem in iteration ν

πνk : Optimal solution of dual of Q(xν , χk)

Theory (continued)

=⇒ ∀ 2.-s. feasible x :

Q(x , χk) ≥ (πνk )T (h(χk)− T (χk)x)

=⇒ ∀ 2.-s. feasible x :

E[Q(x , χ)] =
K∑

k=1

pkQ(x , χk) ≥
K∑

k=1

pk(πνk )T (h(χk)− T (χk)x)
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Optimality cut III

xν , θν : Optimal solution of master problem in iteration ν

πνk : Optimal solution of dual of Q(xν , χk)

Optimality cut

θ ≥
K∑

k=1

pk(πνk )T (h(χk)− T (χk)x)
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Feasibility cut

First:

Test feasibility of optimal solution of master problem by computing:

zk = min 1T v+
k

s.t. Wvk + v+
k ≥ h(χk)− T (χk)xν ,

vk , v
+
k ≥ 0.

If zk = 0:

xν is 2.-s. feasible
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Feasibility cut

First:

Test feasibility of optimal solution of master problem by computing:

zk = min 1T v+
k

s.t. Wvk + v+
k ≥ h(χk)− T (χk)xν ,

vk , v
+
k ≥ 0. (6a)

If zk > 0:

xν is not 2.-s. feasible ⇒ Add feasibility cut
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Feasibility cut II

Theory

Consider dual:

0 < zk = max σT (h(χk)− T (χk)xν)

s.t. σTW ≤ 0,

σ ≤ 1.

σνk : Optimal solution of above dual problem

Feasibility cut

σνk
T (h(χk)− T (χk)x) ≤ 0
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

L-Shaped Algorithm

r , s, ν ← 0
while 1 6= 0 do

ν ← ν + 1
Solve Current Master Problem (CMP)

min
x≥0

cT x + θ

s.t. Ax ≥ b.

D`x ≥ d` (` = 1, . . . , r)

G`x + θ ≥ g` (` = 1, . . . , s)

end while
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

L-Shaped Algorithm

r , s, ν ← 0
while 1 6= 0 do

ν ← ν + 1
Solve Current Master Problem (CMP) → xν, θν

if xν not 2.-s. feasible then

Add feasibility cut (r ← r + 1)
Go back: Resolve CMP

end if

Add optimality cut (s ← s + 1)
if xν , θν satisfy optimality cut then

STOP. xν is optimal solution.

else

Go back: Resolve CMP

end if

end while
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

Results

Only finitely many cuts needed to obtain feasibility

BUT: Number can be large!

HOWEVER: Feasibility cut has ”deepest cut property”

Algorithm stops after finitely many iterations
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Stochastic Optimization

Decomposition Methods

L-shaped method (Benders’ decomposition)

QUESTIONS?

What about next week?
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