Stochastic Optimization IDA PhD course 2011ht

Stefanie Kosuch

PostDok at TCSLab www.kosuch.eu/stefanie/

 Lecture: Decomposition Methods 01. December 2011

- Sample Average Approximation
- Stochastic Gradient method

- Sample Average Approximation
- Stochastic Gradient method

2 Decomposition Methods

- A bit of History
- Dantzig-Wolfe Decomposition
- L-shaped method (Benders' decomposition)

Outline

1 Outer and Inner Approximation Approaches

- Sample Average Approximation
- Stochastic Gradient method

2 Decomposition Methods

- A bit of History
- Dantzig-Wolfe Decomposition
- L-shaped method (Benders' decomposition)

Outer versus Inner Approximation

Outer versus Inner Approximation

$\label{eq:Problem Approximation} \mathsf{Problem Approximation} \leftrightarrow \mathsf{Randomized Algorithm}$

Outer versus Inner Approximation

$\label{eq:Problem Approximation} \mathsf{Problem Approximation} \leftrightarrow \mathsf{Randomized Algorithm}$

Sampling done before solution \leftrightarrow Sampling during solution process

Outer versus Inner Approximation

$\label{eq:Problem Approximation} \mathsf{Problem Approximation} \leftrightarrow \mathsf{Randomized Algorithm}$

Sampling done before solution \leftrightarrow Sampling during solution process

Deterministic reformulation \leftrightarrow Deterministic problems during solution

Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Outline

1 Outer and Inner Approximation Approaches

- Sample Average Approximation
- Stochastic Gradient method

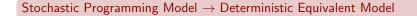
2 Decomposition Methods

- A bit of History
- Dantzig-Wolfe Decomposition
- L-shaped method (Benders' decomposition)

Sample Average Approximation

$\mathsf{Stochastic}\ \mathsf{Programming}\ \mathsf{Model} \to \mathsf{Deterministic}\ \mathsf{Equivalent}\ \mathsf{Model}$

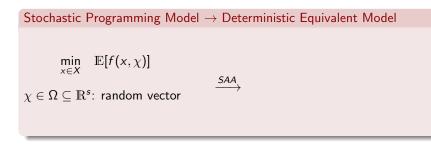
Sample Average Approximation



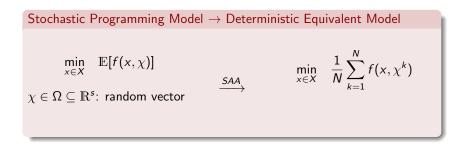
 $\min_{x\in X} \quad \mathbb{E}[f(x,\chi)]$

 $\chi \in \Omega \subseteq \mathbb{R}^{s}$: random vector

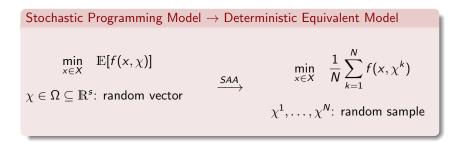
Sample Average Approximation



Sample Average Approximation



Sample Average Approximation



Sample Average Approximation

Stochastic Programming Model \rightarrow Deterministic Equivalent Model $\begin{array}{ccc}
\min_{x \in X} & \mathbb{E}[f(x, \chi)] \\
\chi \in \Omega \subseteq \mathbb{R}^{s}: \text{ random vector} & \xrightarrow{SAA} & \min_{x \in X} & \frac{1}{N} \sum_{k=1}^{N} f(x, \chi^{k}) \\
\chi^{1}, \dots, \chi^{N}: \text{ random sample}
\end{array}$

Main Result

Sample Average Approximation

Stochastic Programming Model \rightarrow Deterministic Equivalent Model $\begin{array}{cc} \min_{x \in X} & \mathbb{E}[f(x, \chi)] \\ \chi \in \Omega \subseteq \mathbb{R}^{s}: \text{ random vector} \end{array} \xrightarrow{SAA} & \min_{x \in X} & \frac{1}{N} \sum_{k=1}^{N} f(x, \chi^{k}) \\ \chi^{1}, \dots, \chi^{N}: \text{ random sample}
\end{array}$

Main Result

Under some mild (technical) assumptions:

Sample Average Approximation

Stochastic Programming Model \rightarrow Deterministic Equivalent Model $\begin{array}{c} \min_{x \in X} & \mathbb{E}[f(x, \chi)] \\ \chi \in \Omega \subseteq \mathbb{R}^{s}: \text{ random vector} \end{array} \xrightarrow{SAA} & \min_{x \in X} & \frac{1}{N} \sum_{k=1}^{N} f(x, \chi^{k}) \\ \chi^{1}, \dots, \chi^{N}: \text{ random sample}
\end{array}$

Main Result

Under some mild (technical) assumptions:

 $\forall \epsilon > 0$:

Linköping University

Sample Average Approximation

Stochastic Programming Model \rightarrow Deterministic Equivalent Model $\begin{array}{cc} \min_{x \in X} & \mathbb{E}[f(x, \chi)] \\ \chi \in \Omega \subseteq \mathbb{R}^{s}: \text{ random vector} \end{array} \xrightarrow{SAA} & \min_{x \in X} & \frac{1}{N} \sum_{k=1}^{N} f(x, \chi^{k}) \\ \chi^{1}, \dots, \chi^{N}: \text{ random sample} \end{array}$

Main Result

Under some mild (technical) assumptions:

 $\forall \epsilon > 0$:

 $\mathbb{P}\{\mathsf{dist}_{\mathcal{A}}(\hat{x}_{\mathcal{N}}) \leq \epsilon\}$ increases exponentially with \mathcal{N}

Linköping University

Stochastic Optimization

Outer and Inner Approximation Approaches

Stochastic Gradient method

Outline

1 Outer and Inner Approximation Approaches

- Sample Average Approximation
- Stochastic Gradient method

2 Decomposition Methods

- A bit of History
- Dantzig-Wolfe Decomposition
- L-shaped method (Benders' decomposition)

Stochastic Optimization

Outer and Inner Approximation Approaches

Stochastic Gradient method

Stochastic Gradient method

Basic Idea

Basically: Gradient method

Stochastic Gradient method

- Basically: Gradient method
- At each iteration: Sample random parameters

Stochastic Gradient method

- Basically: Gradient method
- At each iteration: Sample random parameters
- Compute new solution based on this sample

Stochastic Gradient method

- Basically: Gradient method
- At each iteration: Sample random parameters
- Compute new solution based on this sample
- Use gradient of function **inside** expectation

Stochastic Gradient method

- Basically: Gradient method
- At each iteration: Sample random parameters
- Compute new solution based on this sample
- Use gradient of function **inside** expectation
- Hopefully:

Stochastic Gradient method

- Basically: Gradient method
- At each iteration: Sample random parameters
- Compute new solution based on this sample
- Use gradient of function **inside** expectation
- Hopefully:

1)
$$x^k o x^*$$
 as $k o \infty$ w.h.p.

Stochastic Gradient method

Problem type (mostly)

Stochastic Gradient method

Problem type (mostly)

 $\begin{array}{ll} \min \quad \mathbb{E}[f(x,\chi)]\\ \text{s.t.} \quad x\in X \end{array}$

Stochastic Gradient method

Problem type (mostly)

 $\begin{array}{ll} \min \quad \mathbb{E}[f(x,\chi)]\\ \text{s.t.} \quad x\in X \end{array}$

Stochastic Gradient method

Problem type (mostly)

 $\begin{array}{ll} \min \quad \mathbb{E}[f(x,\chi)]\\ \text{s.t.} \quad x \in X \end{array}$

Stochastic Gradient method

Problem type (mostly)

 $\begin{array}{ll} \min \quad \mathbb{E}[f(x,\chi)]\\ \text{s.t.} \quad x\in X \end{array}$

Where:

• X independent of distribution of random vector

Stochastic Gradient method

Problem type (mostly)

 $\begin{array}{ll} \min \quad \mathbb{E}[f(x,\chi)]\\ \text{s.t.} \quad x\in X \end{array}$

Where:

- X independent of distribution of random vector
- X convex set

Stochastic Gradient method

Problem type (mostly)

 $\begin{array}{ll} \min \quad \mathbb{E}[f(x,\chi)]\\ \text{s.t.} \quad x\in X \end{array}$

Where:

- X independent of distribution of random vector
- X convex set

•
$$f(\cdot, \chi)$$
 convex

Stochastic Gradient method

Problem type (mostly)

 $\begin{array}{ll} \min \quad \mathbb{E}[f(x,\chi)]\\ \text{s.t.} \quad x\in X \end{array}$

Where:

- X independent of distribution of random vector
- X convex set
- $f(\cdot, \chi)$ convex
- $f(\cdot, \chi)$ differentiable (nearly everywhere)

Stochastic Gradient method

Stochastic Gradient Algorithm

Linkoping University

Stochastic Gradient method

Stochastic Gradient Algorithm

 $\substack{k \leftarrow 0 \\ ext{Choose } x^0 ext{ in } X}$

Linkoping University

Stochastic Gradient method

Stochastic Gradient Algorithm

$$k \leftarrow 0$$

Choose x^0 in X
while $k < K_{max}$ do
 $k \leftarrow k+1$

end while

Stochastic Gradient method

Stochastic Gradient Algorithm

$$egin{aligned} & k \leftarrow 0 \ & ext{Choose } x^0 ext{ in } X \ & ext{while } k < K_{max} ext{ do} \ & k \leftarrow k+1 \ & ext{Draw } \chi^k = (\chi_1^k,...,\chi_n^k) \end{aligned}$$

end while

Stochastic Gradient method

Stochastic Gradient Algorithm

$$\substack{k \leftarrow 0 \\ ext{Choose } x^0 ext{ in } X \\ ext{while } k < K_{max} ext{ do} \\ k \leftarrow k+1 \\ ext{Draw } \chi^k = (\chi^k_1,...,\chi^k_n) \\ ext{Update } x^k ext{ as follows:}$$

$$x^{k+1} \leftarrow x^k + \epsilon^k r^k$$

end while

Linkoping University

Outer and Inner Approximation Approaches

Stochastic Gradient method

•
$$r^k = \nabla_x f(x, \chi^k)$$

Stochastic Gradient Algorithm

$$k \leftarrow 0$$

Choose x^0 in X
while $k < K_{max}$ do
 $k \leftarrow k + 1$
Draw $\chi^k = (\chi_1^k, ..., \chi_n^k)$
Update x^k as follows:

$$x^{k+1} \leftarrow x^k + \epsilon^k r^k$$

end while

Linkoping oniversity

Outer and Inner Approximation Approaches

Stochastic Gradient method

•
$$r^k = \nabla_x f(x, \chi^k)$$

• $(\epsilon^k)_{k \in \mathbb{N}}$ is a σ -sequence

Stochastic Gradient Algorithm

$$k \leftarrow 0$$

Choose x^0 in X
while $k < K_{max}$ do
 $k \leftarrow k + 1$
Draw $\chi^k = (\chi_1^k, ..., \chi_n^k)$
Update x^k as follows:

$$x^{k+1} \leftarrow x^k + \epsilon^k r^k$$

end while

Outer and Inner Approximation Approaches

Stochastic Gradient method

•
$$r^k = \nabla_x f(x, \chi^k)$$

• $(\epsilon^k)_{k \in \mathbb{N}}$ is a σ -sequence

Stochastic Gradient Algorithm

$$\begin{array}{l} k \leftarrow 0\\ \text{Choose } x^0 \text{ in } X\\ \text{while } k < K_{max} \text{ do}\\ k \leftarrow k+1\\ \text{Draw } \chi^k = (\chi_1^k,...,\chi_n^k)\\ \text{Update } x^k \text{ as follows:}\\ x^{k+1} \leftarrow x^k + \epsilon^k r^k\end{array}$$

Project x^{k+1} on Xend while

Lunkoping University

Outer and Inner Approximation Approaches

<u>Stoc</u>hastic Gradient method

•
$$r^k = \nabla_x f(x, \chi^k)$$

• $(\epsilon^k)_{k \in \mathbb{N}}$ is a σ -sequence

Stochastic Gradient Algorithm

$$\begin{array}{l} k \leftarrow 0 \\ \text{Choose } x^0 \text{ in } X \\ \text{while } k < K_{max} \text{ do} \\ k \leftarrow k+1 \\ \text{Draw } \chi^k = (\chi_1^k,...,\chi_n^k) \\ \text{Update } x^k \text{ as follows:} \\ \\ x^{k+1} \leftarrow x^k + \epsilon^k r^k \\ \\ \text{Project } x^{k+1} \text{ on } X \\ \text{end while} \\ \text{return Best found or last solution} \end{array}$$

rk

Stefanie Kosuch Stochastic Optimization

Stochastic Gradient method

Assumptions

Stochastic Gradient method

Assumptions

1) $\forall x \in X$: $f(x, \chi)$ is a random variable with finite expectation

Stochastic Gradient method

Assumptions

- 1) $\forall x \in X$: $f(x, \chi)$ is a random variable with finite expectation
- 2) $\forall \chi \in \Omega$: $f(\cdot, \chi)$ is convex, proper, differentiable

Stochastic Gradient method

Assumptions

- 1) $\forall x \in X$: $f(x, \chi)$ is a random variable with finite expectation
- 2) $\forall \chi \in \Omega$: $f(\cdot, \chi)$ is convex, proper, differentiable
- 3) $\exists m > 0 \text{ s.t.}$

 $\forall x \in X, \forall \chi \in \Omega : \|\nabla_x f(x, \chi)\| \le m$

Stochastic Gradient method

Assumptions

- 1) $\forall x \in X$: $f(x, \chi)$ is a random variable with finite expectation
- 2) $\forall \chi \in \Omega$: $f(\cdot, \chi)$ is convex, proper, differentiable
- 3) $\exists m > 0 \text{ s.t.}$

$$\forall x \in X, \forall \chi \in \Omega : \|\nabla_x f(x, \chi)\| \le m$$

- 4) \exists set of optimal solutions X^* and c > 0 s.t.:
 - $\forall x \in X, x^* \in X^* : \quad \mathbb{E}[f(x, \chi)] \mathbb{E}[f(x^*, \chi)] \ge c \cdot (\operatorname{dist}_{X^*}(x))^2$

Stochastic Gradient method

Assumptions

- 1) $\forall x \in X$: $f(x, \chi)$ is a random variable with finite expectation
- 2) $\forall \chi \in \Omega$: $f(\cdot, \chi)$ is convex, proper, differentiable
- 3) $\exists m > 0 \text{ s.t.}$

$$\forall x \in X, \forall \chi \in \Omega : \|\nabla_x f(x, \chi)\| \le m$$

- 4) \exists set of optimal solutions X^* and c > 0 s.t.:
 - $\forall x \in X, x^* \in X^* : \quad \mathbb{E}[f(x, \chi)] \mathbb{E}[f(x^*, \chi)] \ge c \cdot (\operatorname{dist}_{X^*}(x))^2$

Theorem

Under assumptions 1) - 4) we have:

$$\lim_{K\to\infty}\mathbb{E}\left[(\textit{dist}_{X^*}(x^k))^2\right]=0$$

Linköping University

Outer and Inner Approximation Approaches
Stochastic Gradient method

Assumptions

- 1) $\forall x \in X$: $f(x, \chi)$ is a random variable with finite expectation
- 2) $\forall \chi \in \Omega$: $f(\cdot, \chi)$ is convex, proper, differentiable
- **3)** $\exists m > 0 \text{ s.t.}$

 $\forall x \in X, \forall \chi \in \Omega : \|\nabla_x f(x, \chi)\| \le m$

4) \exists set of optimal solutions X^* and c > 0 s.t.:

 $\forall x \in X, x^* \in X^*: \quad \mathbb{E}[f(x,\chi)] - \mathbb{E}[f(x^*,\chi)] \ge c \cdot (\operatorname{dist}_{X^*}(x))^2$

Outer and Inner Approximation Approaches
Stochastic Gradient method

Assumptions

- 1) $\forall x \in X$: $f(x, \chi)$ is a random variable with finite expectation
- 2) $\forall \chi \in \Omega$: $f(\cdot, \chi)$ is convex, proper, differentiable
- 3) $\exists m > 0 \text{ s.t.}$

 $\forall x \in X, \forall \chi \in \Omega : \|\nabla_x f(x, \chi)\| \le m$

4) \exists set of optimal solutions X^* and c > 0 s.t.: $\forall x \in X, x^* \in X^*$: $\mathbb{E}[f(x, \chi)] - \mathbb{E}[f(x^*, \chi)] > c \cdot (\text{dist}_{X^*}(x))^2$

Theorem

Let
$$d^0 = (dist_{X^*}(x^0))^2$$
 and $\epsilon^k = \frac{1}{ck + \frac{m^2}{cd^0}}$.

ersity

Outer and Inner Approximation Approaches

Stochastic Gradient method

•
$$r^k = \nabla_x f(x, \chi^k)$$

• $(\epsilon^k)_{k \in \mathbb{N}}$ is a σ -sequence

Stochastic Gradient Algorithm

$$\begin{array}{l} k \leftarrow 0 \\ \text{Choose } x^0 \text{ in } X \\ \text{while } k < K_{max} \text{ do} \\ k \leftarrow k+1 \\ \text{Draw } \chi^k = (\chi_1^k,...,\chi_n^k) \\ \text{Update } x^k \text{ as follows:} \\ \\ \end{array}$$
Project $x^{k+1} \leftarrow x^k + \epsilon^k$
Project x^{k+1} on X
end while

rk

return Best found or last solution

Linkoping University

Outer and Inner Approximation Approaches
Stochastic Gradient method

Assumptions

- 1) $\forall x \in X$: $f(x, \chi)$ is a random variable with finite expectation
- 2) $\forall \chi \in \Omega$: $f(\cdot, \chi)$ is convex, proper, differentiable
- 3) $\exists m > 0 \text{ s.t.}$

 $\forall x \in X, \forall \chi \in \Omega : \|\nabla_x f(x, \chi)\| \le m$

4) \exists set of optimal solutions X^* and c > 0 s.t.: $\forall x \in X, x^* \in X^*$: $\mathbb{E}[f(x, \chi)] - \mathbb{E}[f(x^*, \chi)] > c \cdot (\text{dist}_{X^*}(x))^2$

Theorem

Let
$$d^0 = (dist_{X^*}(x^0))^2$$
 and $\epsilon^k = \frac{1}{ck + \frac{m^2}{cd^0}}$.

ersity

Outer and Inner Approximation Approaches
Stochastic Gradient method

Assumptions

- 1) $\forall x \in X$: $f(x, \chi)$ is a random variable with finite expectation
- 2) $\forall \chi \in \Omega$: $f(\cdot, \chi)$ is convex, proper, differentiable
- 3) $\exists m > 0 \text{ s.t.}$

 $\forall x \in X, \forall \chi \in \Omega : \|\nabla_x f(x, \chi)\| \le m$

4) ∃ set of optimal solutions X* and c > 0 s.t.:
 ∀x ∈ X, x* ∈ X* : E[f(x, χ)] − E[f(x*, χ)] ≥ c ⋅ (dist_{X*}(x))²

Theorem

Let
$$d^0 = (dist_{X^*}(x^0))^2$$
 and $\epsilon^k = \frac{1}{ck + \frac{m^2}{cd^0}}$.
Under assumptions 1) - 4) we have:

$$\mathbb{E}\left[(\textit{dist}_{X^*}(x^k))^2
ight] \leq rac{1}{rac{c^2}{m^2}k+rac{1}{d^0}}$$

ersity

Outline

1 Outer and Inner Approximation Approaches

- Sample Average Approximation
- Stochastic Gradient method

2 Decomposition Methods

- A bit of History
- Dantzig-Wolfe Decomposition
- L-shaped method (Benders' decomposition)

A bit of History

Outline

1 Outer and Inner Approximation Approaches

- Sample Average Approximation
- Stochastic Gradient method

2 Decomposition Methods

- A bit of History
- Dantzig-Wolfe Decomposition
- L-shaped method (Benders' decomposition)

George Dantzig

Linear programming under uncertainty. (1955)

Management Science 1:197-206

George Dantzig

Linear programming under uncertainty. (1955) Management Science 1:197–206

Two-Stage and Simple recourse problems

George Dantzig

Linear programming under uncertainty. (1955) *Management Science* 1:197–206

- Two-Stage and Simple recourse problems
- Finite number of scenarios

George Dantzig

Linear programming under uncertainty. (1955) Management Science 1:197–206

- Two-Stage and Simple recourse problems
- Finite number of scenarios
- Deterministic Reformulation

George Dantzig

Linear programming under uncertainty. (1955) Management Science 1:197–206

- Two-Stage and Simple recourse problems
- Finite number of scenarios
- Deterministic Reformulation
- No use of special structure

└─ A bit of History

George Dantzig and Philip Wolfe Decomposition principle for linear programs. *Operations Research* 8(1):101–111, 1960

A bit of History

George Dantzig and Philip Wolfe Decomposition principle for linear programs. *Operations Research* 8(1):101–111, 1960

Solution method for linear problems of special structure

George Dantzig and Philip Wolfe **Decomposition principle for linear programs.** *Operations Research* 8(1):101–111, 1960

George Dantzig and Albert Madansky On the solution of two-stage linear programs under uncertainty. Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability 1:165–176, 1961

Solution method for linear problems of special structure

George Dantzig and Philip Wolfe **Decomposition principle for linear programs.** *Operations Research* 8(1):101–111, 1960

George Dantzig and Albert Madansky On the solution of two-stage linear programs under uncertainty. Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability 1:165–176, 1961

- Solution method for linear problems of special structure
- Applicable to dual of Linear Two-Stage Problem with fixed recourse

A bit of History

Theorem

Given: linear two-stage problem Let:

- fixed recourse
- {λ ∈ ℝ^{m₂} : d ≥ λW} ≠ Ø
 (→ second-stage problem primal and dual feasible)

Then $\mathbb{E}\left[\mathcal{Q}(\mathbf{x},\chi)\right]$ is

- real-valued,
- piecewise linear and convex in x,
- Lipschitz continuous in x,
- sub-differentiable in x.

Richard Van Slyke and Roger J-B. Wets

L-shaped linear programs with applications to optimal control and stochastic programming.

MSIAM Journal on Applied Mathematics 17(4):638-663, 1969

Richard Van Slyke and Roger J-B. Wets L-shaped linear programs with applications to optimal control and stochastic programming. MSIAM Journal on Applied Mathematics 17(4):638–663, 1969

Solution method that makes use of special problem structures

Richard Van Slyke and Roger J-B. Wets L-shaped linear programs with applications to optimal control and stochastic programming. MSIAM Journal on Applied Mathematics 17(4):638–663, 1969

- Solution method that makes use of special problem structures
- Reduced computing time

Richard Van Slyke and Roger J-B. Wets L-shaped linear programs with applications to optimal control and stochastic programming. MSIAM Journal on Applied Mathematics 17(4):638–663, 1969

- Solution method that makes use of special problem structures
- Reduced computing time
- Restriction to problems with random right hand side

Richard Van Slyke and Roger J-B. Wets

L-shaped linear programs with applications to optimal control and stochastic programming.

MSIAM Journal on Applied Mathematics 17(4):638-663, 1969

- Solution method that makes use of special problem structures
- Reduced computing time
- Restriction to problems with random right hand side
- Extension to fixed recourse possible

Decomposition Methods
A bit of History

John R. Birge and Francis V. Louveaux A multicut algorithm for two-stage stochastic linear programs. European Journal of Operational Research 34(3):384–392, 1988

John R. Birge and Franois V. Louveaux **A multicut algorithm for two-stage stochastic linear programs.** *European Journal of Operational Research* 34(3):384–392, 1988

Modification of L-shaped method

 John R. Birge and Francis V. Louveaux
 A multicut algorithm for two-stage stochastic linear programs. European Journal of Operational Research 34(3):384–392, 1988

- Modification of L-shaped method
- Add several cuts per iteration

John R. Birge and Franois V. Louveaux **A multicut algorithm for two-stage stochastic linear programs.** *European Journal of Operational Research* 34(3):384–392, 1988

- Modification of L-shaped method
- Add several cuts per iteration
- Advantage: Less iterations needed

 John R. Birge and Francis V. Louveaux
 A multicut algorithm for two-stage stochastic linear programs. European Journal of Operational Research 34(3):384–392, 1988

- Modification of L-shaped method
- Add several cuts per iteration
- Advantage: Less iterations needed
- Disadvantage: Size of subproblems might slow algorithm down

Regularized decomposition of stochastic programs: Algorithmic techniques and numerical results.

Regularized decomposition of stochastic programs: Algorithmic techniques and numerical results.

Technical Report WP-93-21, International Institute for Applied Systems Analysis (IIASA), Austria 1993

Aim: Reduce size of master problem

Regularized decomposition of stochastic programs: Algorithmic techniques and numerical results.

- Aim: Reduce size of master problem
- Idea: Regularize step size

Regularized decomposition of stochastic programs: Algorithmic techniques and numerical results.

- Aim: Reduce size of master problem
- Idea: Regularize step size
- Advantage: Reduced number of iterations due to stabilizing effect

Regularized decomposition of stochastic programs: Algorithmic techniques and numerical results.

- Aim: Reduce size of master problem
- Idea: Regularize step size
- Advantage: Reduced number of iterations due to stabilizing effect
- Result: At most $n_1 + 2K$ cuts need to be stored

Decomposition Methods

Dantzig-Wolfe Decomposition

Outline

1 Outer and Inner Approximation Approaches

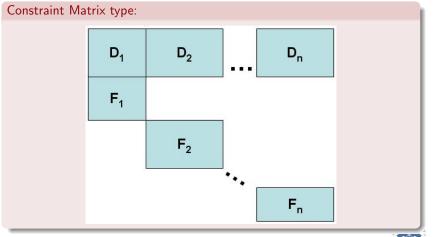
- Sample Average Approximation
- Stochastic Gradient method

2 Decomposition Methods

- A bit of History
- Dantzig-Wolfe Decomposition
- L-shaped method (Benders' decomposition)

Decomposition Methods

Dantzig-Wolfe Decomposition



Stochastic Optimization

Decomposition Methods

Dantzig-Wolfe Decomposition

Dantzig-Wolfe Decomposition and Stochastic Programming

Decomposition Methods

Dantzig-Wolfe Decomposition

Dantzig-Wolfe Decomposition and Stochastic Programming Dantzig-Wolfe Decomposition method

to solve dual of Linear Two-Stage problems with fixed recourse.

Stochastic Optimization

Decomposition Methods

L-shaped method (Benders' decomposition)

Outline

1 Outer and Inner Approximation Approaches

- Sample Average Approximation
- Stochastic Gradient method

2 Decomposition Methods

- A bit of History
- Dantzig-Wolfe Decomposition
- L-shaped method (Benders' decomposition)

Linear Two-Stage Problem with fixed recourse

$$\min_{x\geq 0} \quad \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} + \mathbb{E}[\mathcal{Q}(\boldsymbol{x},\chi)]$$

s.t.
$$Ax \ge b$$
,

$$\begin{aligned} \mathcal{Q}(x,\chi) &= \min_{y \ge 0} \quad d^{\mathsf{T}}y \\ \text{s.t.} \quad \mathsf{T}(\chi)x + Wy \ge h(\chi) \end{aligned}$$

 $x \in \mathbb{R}^{n_1}$: decision vector of 1st stage $y \in \mathbb{R}^{n_2}$: decision vectors of 2nd stage (recourse action)

Linear Two-Stage Problem with fixed recourse

$$\min_{x\geq 0} \quad c^{\mathsf{T}}x + \mathbb{E}[\mathcal{Q}(x,\chi)]$$

s.t.
$$Ax \ge b$$
,

$$\begin{aligned} \mathcal{Q}(x,\chi) &= \min_{y \ge 0} \quad d^{\mathsf{T}}y \\ \text{s.t.} \quad \mathsf{T}(\chi)x + Wy \ge h(\chi) \end{aligned}$$

$$\begin{split} & x \in \mathbb{R}^{n_1}: \text{ decision vector of } 1^{\text{st}} \text{ stage} \\ & y \in \mathbb{R}^{n_2}: \text{ decision vectors of } 2^{\text{nd}} \text{ stage (recourse action)} \\ & \chi^1, \dots, \chi^K \in \mathbb{R}^s: \text{ scenarios} \\ & \mathbb{P}\{\chi = \chi^k\} := p^k: \text{ probabilities} \end{split}$$

Linear Two-Stage Problem with fixed recourse

$$\min_{x\geq 0} \quad c^{\mathsf{T}}x + \mathbb{E}[\mathcal{Q}(x,\chi)]$$

s.t.
$$Ax \ge b$$
,

$$\mathcal{Q}(x,\chi) = \min_{\substack{y \ge 0 \\ \text{s.t.}}} d^T y$$

s.t. $Wy \ge h(\chi) - T(\chi)x$

$$\begin{split} & x \in \mathbb{R}^{n_1}: \text{ decision vector of } 1^{\text{st}} \text{ stage} \\ & y \in \mathbb{R}^{n_2}: \text{ decision vectors of } 2^{\text{nd}} \text{ stage (recourse action)} \\ & \chi^1, \dots, \chi^K \in \mathbb{R}^s: \text{ scenarios} \\ & \mathbb{P}\{\chi = \chi^k\} := p^k: \text{ probabilities} \end{split}$$

Linear Two-Stage Problem with fixed recourse $\min_{\substack{x \ge 0\\ \theta \ge 0}} c^T x + \mathbb{E}[\mathcal{Q}(x, \chi)]$ s.t. Ax > b, $\theta \geq \mathbb{E}[\mathcal{Q}(x,\chi)]$ $\mathcal{Q}(x,\chi) = \min_{y>0} d^T y$ s.t. $Wy \ge h(\chi) - T(\chi)x$. $x \in \mathbb{R}^{n_1}$: decision vector of 1st stage $v \in \mathbb{R}^{n_2}$: decision vectors of 2nd stage (recourse action) $\chi^1, \ldots, \chi^K \in \mathbb{R}^s$: scenarios $\mathbb{P}\{\chi = \chi^k\} := p^k$: probabilities

Linear Two-Stage Problem with fixed recourse

 $\min_{\substack{x \ge 0\\ \theta \ge 0}} c^T x + \theta$ s.t. Ax > b, $\theta \geq \mathbb{E}[\mathcal{Q}(x,\chi)]$ $\mathcal{Q}(x,\chi) = \min_{y>0} \quad d^T y$ s.t. $Wy \ge h(\chi) - T(\chi)x$. $x \in \mathbb{R}^{n_1}$: decision vector of 1st stage $y \in \mathbb{R}^{n_2}$: decision vectors of 2nd stage (recourse action) $\chi^1, \ldots, \chi^K \in \mathbb{R}^s$: scenarios $\mathbb{P}\{\chi = \chi^k\} := p^k$: probabilities

- Decomposition Methods
 - L-shaped method (Benders' decomposition)

Idea

Start by solving:

$$\min_{\substack{x \ge 0}} c^T x \\ \text{s.t.} \quad Ax \ge b$$

Idea

Start by solving:

$$\min_{\substack{x \ge 0 \\ \text{s.t.}}} c^T x \\ Ax \ge b.$$

Then:

Idea

Start by solving:

$$\min_{\substack{x \ge 0 \\ \text{s.t.}}} c^T x \\ Ax \ge b$$

Then:

Iteratively add valid cuts (constraints) to the problem

S

Idea

Start by solving:

$$\min_{\substack{x \ge 0}} c^T x \\ \text{s.t.} \quad Ax \ge b$$

Then:

Iteratively add valid cuts (constraints) to the problem

S

Ensure that optimal solution of *master problem*...

Idea

Start by solving:

$$\min_{\substack{x \ge 0}} c^T x \\ \text{s.t.} \quad Ax \ge b$$

Then:

Iteratively add valid cuts (constraints) to the problem

Ensure that optimal solution of master problem ...

…"renders" 2.-s. problem feasible (2.-s. feasible)

Idea

Start by solving:

$$\min_{\substack{x \ge 0}} c^T x \\ \text{s.t.} \quad Ax \ge b$$

Then:

Iteratively add valid cuts (constraints) to the problem

Ensure that optimal solution of *master problem*...

- …"renders" 2.-s. problem feasible (2.-s. feasible)
- ...is optimal for original problem

Idea

Start by solving:

$$\min_{\substack{x \ge 0}} c^T x \\ \text{s.t.} \quad Ax \ge b$$

Then:

Iteratively add valid cuts (constraints) to the problem

Ensure that optimal solution of master problem ...

- ... "renders" 2.-s. problem feasible (2.-s. feasible) \rightarrow Feasibility cut.
- ...is optimal for original problem

Idea

Start by solving:

$$\min_{\substack{x \ge 0}} c^T x \\ \text{s.t.} \quad Ax \ge b$$

Then:

Iteratively add valid cuts (constraints) to the problem

Ensure that optimal solution of master problem ...

- ... "renders" 2.-s. problem feasible (2.-s. feasible) \rightarrow Feasibility cut.
- ... is optimal for original problem \rightarrow Optimality cut.

Stochastic Optimization

Decomposition Methods

L-shaped method (Benders' decomposition)

Decomposition Methods

L-shaped method (Benders' decomposition)

Basic Structure of L-shaped method

1) Solve current master problem

Current master problem

$$\begin{array}{ll} \min_{x \geq 0} & c^T x + \theta \\ \text{s.t.} & Ax \geq b. \\ & D_{\ell} x \geq d_{\ell} \quad (\ell = 1, \dots, r) \\ & G_{\ell} x + \theta \geq g_{\ell} \quad (\ell = 1, \dots, s) \end{array}$$

Decomposition Methods

L-shaped method (Benders' decomposition)

Basic Structure of L-shaped method

1) Solve current master problem

- 1) Solve current master problem
- 2) As long as second-stage problem infeasible: Add feasibility cuts to master problem.

- 1) Solve current master problem
- As long as second-stage problem infeasible: Add feasibility cuts to master problem.
- 3) If solution optimal: Stop.

- 1) Solve current master problem
- As long as second-stage problem infeasible: Add feasibility cuts to master problem.
- 3) If solution optimal: Stop.

Decomposition Methods

L-shaped method (Benders' decomposition)

Basic Structure of L-shaped method

- 1) Solve current master problem
- As long as second-stage problem infeasible: Add feasibility cuts to master problem.

If solution optimal: Stop. Otherwise: Add optimality cut to master problem. Go back to 1).

Decomposition Methods

L-shaped method (Benders' decomposition)

Optimality cut

Idea

Decomposition Methods

L-shaped method (Benders' decomposition)

Optimality cut

Idea

Approximate $\theta \geq \mathbb{E}[\mathcal{Q}(x,\chi)]$ by linear inequalities

 $x \in$

L-shaped method (Benders' decomposition)

Linear Two-Stage Problem with fixed recourse

$$\begin{array}{ll} \min_{\substack{x \geq 0 \\ \theta \geq 0}} & c^T x + \theta \\ \text{s.t.} & Ax \geq b, \\ & \theta \geq \mathbb{E}[\mathcal{Q}(x,\chi)] \\ & \mathcal{Q}(x,\chi) = \min_{y \geq 0} & d^T y \\ & \text{s.t.} & Wy \geq h(\chi) - T(\chi)x. \end{array}$$
$$x \in \mathbb{R}^{n_1}: \text{ decision vector of } 1^{\text{st}} \text{ stage} \\ y \in \mathbb{R}^{n_2}: \text{ decision vectors of } 2^{\text{nd}} \text{ stage (recourse action)} \\ \chi^1, \dots, \chi^K \in \mathbb{R}^s: \text{ scenarios} \\ \mathbb{P}\{\chi = \chi^k\} := p^k: \text{ probabilities} \end{array}$$

L-shaped method (Benders' decomposition)

Linear Two-Stage Problem with fixed recourse

$$\begin{array}{ll} \min_{\substack{x \geq 0 \\ \theta \geq 0}} & c^T x + \theta \\ \text{s.t.} & Ax \geq b, \\ & \theta \geq \mathbb{E}[\mathcal{Q}(x,\chi)] \\ & \mathcal{Q}(x,\chi) = \min_{\substack{y \geq 0 \\ y \geq 0}} & d^T y \\ & \text{s.t.} & Wy \geq h(\chi) - T(\chi)x. \end{array}$$
$$x \in \mathbb{R}^{n_1}: \text{ decision vector of } 1^{\text{st}} \text{ stage} \\ y \in \mathbb{R}^{n_2}: \text{ decision vectors of } 2^{\text{nd}} \text{ stage (recourse action)} \end{array}$$

$$y \in \mathbb{R}^{n_2}$$
: decision vectors of 2nd stage (recourse a $\chi^1, \ldots, \chi^K \in \mathbb{R}^s$: scenarios $\mathbb{P}\{\chi = \chi^k\} := p^k$: probabilities

Decomposition Methods

L-shaped method (Benders' decomposition)

Optimality cut

Idea

Approximate $\theta \geq \mathbb{E}[\mathcal{Q}(x,\chi)]$ by linear inequalities

Decomposition Methods

L-shaped method (Benders' decomposition)

Optimality cut

Idea

Approximate $\theta \geq \mathbb{E}[\mathcal{Q}(x,\chi)]$ by linear inequalities

Use: Dual of second-stage problem

L-shaped method (Benders' decomposition)

Optimality cut

Idea

Approximate $\theta \geq \mathbb{E}[\mathcal{Q}(x,\chi)]$ by linear inequalities

Use: Dual of second-stage problem

$$\max_{\substack{\pi \ge 0 \\ \text{s.t.}}} \pi^T (h(\chi) - T(\chi)x)$$

L-shaped method (Benders' decomposition)

Optimality cut

Idea

Approximate $\theta \geq \mathbb{E}[\mathcal{Q}(x,\chi)]$ by linear inequalities

Use: Dual of second-stage problem

$$\max_{\substack{\pi \ge 0 \\ \text{s.t.}}} \pi^T (h(\chi) - T(\chi)x)$$

Decomposition Methods

L-shaped method (Benders' decomposition)

Optimality cut II

L-shaped method (Benders' decomposition)

Optimality cut II

• x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν

L-shaped method (Benders' decomposition)

Optimality cut II

- x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν
- π_k^{ν} : Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^k)$

L-shaped method (Benders' decomposition)

Optimality cut II

- x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν
- π_k^{ν} : Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^k)$

L-shaped method (Benders' decomposition)

Optimality cut II

• x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν

• π_k^{ν} : Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^k)$

Theory

Linköping University

L-shaped method (Benders' decomposition)

Optimality cut II

- x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν
- π_k^{ν} : Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^k)$

Theory

By Duality:

$$\mathcal{Q}(x^{\nu},\chi^k) = (\pi_k^{\nu})^T (h(\chi^k) - T(\chi^k) x^{\nu})$$

L-shaped method (Benders' decomposition)

Optimality cut II

- x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν
- π_k^{ν} : Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^k)$

Theory

By Duality:

$$\mathcal{Q}(x^{\nu},\chi^k) = (\pi_k^{\nu})^T (h(\chi^k) - T(\chi^k) x^{\nu})$$

 \forall 2.-s. feasible $x \exists \pi_k \text{ s.t.}$:

$$\mathcal{Q}(x,\chi^k) = (\pi_k)^T (h(\chi^k) - T(\chi^k)x)$$

Linköping University

L-shaped method (Benders' decomposition)

Optimality cut II

- x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν
- π_k^{ν} : Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^k)$

Theory

By Duality:

$$\mathcal{Q}(x^{\nu},\chi^k) = (\pi_k^{\nu})^T (h(\chi^k) - T(\chi^k) x^{\nu})$$

 \forall 2.-s. feasible $x \exists \pi_k \text{ s.t.}$:

$$\mathcal{Q}(x,\chi^k) = (\pi_k)^T (h(\chi^k) - T(\chi^k)x)$$

By optimality of π_k :

$$(\pi_k)^T(h(\chi^k) - T(\chi^k)x) \ge (\pi_k^{\nu})^T(h(\chi^k) - T(\chi^k)x)$$

Linköping University

L-shaped method (Benders' decomposition)

Optimality cut II

- x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν
- π_k^{ν} : Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^k)$

Theory

By Duality:

$$\mathcal{Q}(x^{\nu},\chi^k) = (\pi_k^{\nu})^T (h(\chi^k) - T(\chi^k) x^{\nu})$$

 \forall 2.-s. feasible $x \exists \pi_k \text{ s.t.}$:

$$\mathcal{Q}(x,\chi^k) = (\pi_k)^T (h(\chi^k) - T(\chi^k)x)$$

By optimality of $\pi_k{}^a$:

$$(\pi_k)^T(h(\chi^k) - T(\chi^k)x) \ge (\pi_k^\nu)^T(h(\chi^k) - T(\chi^k)x)$$

^aUsed: Feasible set of 2.-s. dual independent of x

ersity

L-shaped method (Benders' decomposition)

Optimality cut II

- x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν
- π_k^{ν} : Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^k)$

Theory (continued)

L-shaped method (Benders' decomposition)

Optimality cut II

• x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν

• π_k^{ν} : Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^k)$

Theory (continued)

 \implies \forall 2.-s. feasible *x*:

L-shaped method (Benders' decomposition)

Optimality cut II

- x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν
- π_k^{ν} : Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^k)$

Theory (continued)

 \implies \forall 2.-s. feasible *x*:

$$\mathcal{Q}(x,\chi^k) \geq (\pi_k^{\nu})^T (h(\chi^k) - T(\chi^k)x)$$

L-shaped method (Benders' decomposition)

Optimality cut II

- x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν
- π_k^{ν} : Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^k)$

Theory (continued)

 \implies \forall 2.-s. feasible *x*:

$$\mathcal{Q}(x,\chi^k) \geq (\pi_k^{\nu})^T (h(\chi^k) - T(\chi^k)x)$$

 \implies \forall 2.-s. feasible *x*:

L-shaped method (Benders' decomposition)

Optimality cut II

- x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν
- π_k^{ν} : Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^k)$

Theory (continued)

 \implies \forall 2.-s. feasible *x*:

$$\mathcal{Q}(x,\chi^k) \geq (\pi_k^{\nu})^T (h(\chi^k) - T(\chi^k)x)$$

 \implies \forall 2.-s. feasible *x*:

$$\mathbb{E}[\mathcal{Q}(x,\chi)] = \sum_{k=1}^{K} p^{k} \mathcal{Q}(x,\chi^{k}) \geq \sum_{k=1}^{K} p^{k} (\pi_{k}^{\nu})^{\mathsf{T}} (h(\chi^{k}) - \mathsf{T}(\chi^{k})x)$$

Linköping University

L-shaped method (Benders' decomposition)

Optimality cut III

- x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν
- π_k^{ν} : Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^k)$

L-shaped method (Benders' decomposition)

Optimality cut III

- x^{ν}, θ^{ν} : Optimal solution of master problem in iteration ν
- π_k^{ν} : Optimal solution of dual of $\mathcal{Q}(x^{\nu}, \chi^k)$

Optimality cut

$$\theta \geq \sum_{k=1}^{K} p^k (\pi_k^{\nu})^T (h(\chi^k) - T(\chi^k) x)$$

Decomposition Methods

L-shaped method (Benders' decomposition)

Feasibility cut

Decomposition Methods

L-shaped method (Benders' decomposition)

Feasibility cut

First:

Test feasibility of optimal solution of master problem by computing:

$$z_k = \min \quad \mathbb{1}^T v_k^+$$

s.t.
$$Wv_k + v_k^+ \ge h(\chi^k) - T(\chi^k) x^{\nu},$$
$$v_k, v_k^+ \ge 0.$$

Decomposition Methods

L-shaped method (Benders' decomposition)

Feasibility cut

First:

Test feasibility of optimal solution of master problem by computing:

$$z_k = \min \quad \mathbb{1}^T v_k^+$$

s.t.
$$Wv_k + v_k^+ \ge h(\chi^k) - T(\chi^k) \mathbf{x}^{\nu},$$
$$v_k, v_k^+ \ge 0.$$

Decomposition Methods

L-shaped method (Benders' decomposition)

Feasibility cut

First:

Test feasibility of optimal solution of master problem by computing:

$$\begin{aligned} z_k &= \min \quad \mathbb{1}^T v_k^+ \\ \text{s.t.} \quad & W v_k + v_k^+ \geq h(\chi^k) - T(\chi^k) x^\nu, \\ & v_k, v_k^+ \geq 0. \end{aligned}$$

If $z_k = 0$:

Decomposition Methods

L-shaped method (Benders' decomposition)

Feasibility cut

First:

Test feasibility of optimal solution of master problem by computing:

$$z_k = \min \quad \mathbb{1}^T v_k^+$$

s.t.
$$Wv_k + v_k^+ \ge h(\chi^k) - T(\chi^k) x^{\nu},$$
$$v_k, v_k^+ \ge 0.$$

If $z_k = 0$: x^{ν} is 2.-s. feasible

Decomposition Methods

L-shaped method (Benders' decomposition)

Feasibility cut

First:

Test feasibility of optimal solution of master problem by computing:

$$z_{k} = \min \quad \mathbb{1}^{T} v_{k}^{+}$$

s.t. $Wv_{k} + v_{k}^{+} \ge h(\chi^{k}) - T(\chi^{k})x^{\nu},$
 $v_{k}, v_{k}^{+} \ge 0.$ (6a)

Decomposition Methods

L-shaped method (Benders' decomposition)

Feasibility cut

First:

Test feasibility of optimal solution of master problem by computing:

$$z_{k} = \min \quad \mathbb{1}^{T} v_{k}^{+}$$

s.t. $Wv_{k} + v_{k}^{+} \ge h(\chi^{k}) - T(\chi^{k})x^{\nu},$
 $v_{k}, v_{k}^{+} \ge 0.$ (6a)

If
$$z_k > 0$$
:
 x^{ν} is not 2.-s. feasible \Rightarrow Add feasibility cut

L-shaped method (Benders' decomposition)

Feasibility cut II

Theory

Consider dual:

$$0 < z_k = \max \quad \sigma^T (h(\chi^k) - T(\chi^k) x^{\nu})$$

s.t.
$$\sigma^T W \le 0,$$

$$\sigma \le \mathbb{1}.$$

L-shaped method (Benders' decomposition)

Feasibility cut II

Theory

Consider dual:

$$0 < z_k = \max \quad \sigma^T (h(\chi^k) - T(\chi^k) x^{\nu})$$

s.t.
$$\sigma^T W \le 0,$$

$$\sigma \le \mathbb{1}.$$

• σ_k^{ν} : Optimal solution of above dual problem

L-shaped method (Benders' decomposition)

Feasibility cut II

Theory

Consider dual:

$$0 < z_k = \max \quad \sigma^T (h(\chi^k) - T(\chi^k) x^{\nu})$$

s.t.
$$\sigma^T W \le 0,$$

$$\sigma \le \mathbb{1}.$$

• σ_k^{ν} : Optimal solution of above dual problem

Feasibility cut

$$\sigma_k^{\nu T}(h(\chi^k) - T(\chi^k)x) \le 0$$

Linköping University

L-shaped method (Benders' decomposition)

L-Shaped Algorithm

L-shaped method (Benders' decomposition)

L-Shaped Algorithm

 $r, s, \nu \leftarrow 0$

L-Shaped Algorithm

$$egin{array}{ll} r,s,
u \leftarrow 0 \ ext{while} \ 1
eq 0 \ ext{do} \
u \leftarrow
u + 1 \end{array}$$

L-Shaped Algorithm

```
r,s,\nu \leftarrow 0 while 1 \neq 0 do \nu \leftarrow \nu + 1 Solve Current Master Problem (CMP):
```


L-Shaped Algorithm

$$r, s,
u \leftarrow 0$$

while $1 \neq 0$ do
 $u \leftarrow
u + 1$
Solve Current Master Problem (CMP):

$$\begin{array}{ll} \min_{x \geq 0} & c^T x + \theta \\ \text{s.t.} & Ax \geq b. \\ & D_\ell x \geq d_\ell \quad (\ell = 1, \dots, r) \\ & G_\ell x + \theta \geq g_\ell \quad (\ell = 1, \dots, s) \end{array}$$

end while

Linköping University

L-Shaped Algorithm

 $egin{aligned} r,s,
u&\leftarrow0 \ ext{while } 1
eq 0 ext{ do } \
u&\leftarrow
u+1 \ ext{Solve Current Master Problem (CMP)} &
ightarrow x^
u, heta^
u \end{aligned}$

end while

Enversity

L-Shaped Algorithm

```
\begin{array}{l} r,s,\nu \leftarrow 0\\ \text{while } 1 \neq 0 \text{ do}\\ \nu \leftarrow \nu + 1\\ \text{Solve Current Master Problem (CMP)} & \rightarrow x^{\nu}, \ \theta^{\nu}\\ \text{if } x^{\nu} \text{ not } 2.\text{-s. feasible then} \end{array}
```

end if

L-Shaped Algorithm

```
\begin{array}{l} r,s,\nu \leftarrow 0 \\ \text{while } 1 \neq 0 \text{ do} \\ \nu \leftarrow \nu + 1 \\ \text{Solve Current Master Problem (CMP)} & \rightarrow x^{\nu}, \ \theta^{\nu} \\ \text{if } x^{\nu} \text{ not } 2.\text{-s. feasible then} \\ \text{Add feasibility cut } (r \leftarrow r+1) \end{array}
```

end if

L-Shaped Algorithm

```
\begin{array}{l} r,s,\nu \leftarrow 0 \\ \text{while } 1 \neq 0 \ \text{do} \\ \nu \leftarrow \nu + 1 \\ \text{Solve Current Master Problem (CMP)} \rightarrow x^{\nu}, \ \theta^{\nu} \\ \text{if } x^{\nu} \ \text{not } 2.\text{-s. feasible then} \\ \text{Add feasibility cut } (r \leftarrow r+1) \\ \text{Go back: Resolve CMP} \\ \text{end if} \end{array}
```

L-Shaped Algorithm

```
\begin{array}{l} r,s,\nu \leftarrow 0 \\ \text{while } 1 \neq 0 \text{ do} \\ \nu \leftarrow \nu + 1 \\ \text{Solve Current Master Problem (CMP)} \rightarrow x^{\nu}, \ \theta^{\nu} \\ \text{if } x^{\nu} \text{ not } 2.\text{-s. feasible then} \\ \text{Add feasibility cut } (r \leftarrow r+1) \\ \text{Go back: Resolve CMP} \\ \text{end if} \\ \text{Add optimality cut } (s \leftarrow s+1) \end{array}
```

L-Shaped Algorithm

```
r, s, \nu \leftarrow 0
while 1 \neq 0 do
  \nu \leftarrow \nu + 1
  Solve Current Master Problem (CMP) \rightarrow x^{
u}, \ \theta^{
u}
  if x^{\nu} not 2.-s. feasible then
     Add feasibility cut (r \leftarrow r+1)
     Go back: Resolve CMP
  end if
  Add optimality cut (s \leftarrow s + 1)
  if x^{\nu}, \theta^{\nu} satisfy optimality cut then
```

end if end while

Ennoping oniversity

L-Shaped Algorithm

```
r, s, \nu \leftarrow 0
while 1 \neq 0 do
  \nu \leftarrow \nu + 1
  Solve Current Master Problem (CMP) \rightarrow x^{
u}, \ \theta^{
u}
  if x^{\nu} not 2.-s. feasible then
     Add feasibility cut (r \leftarrow r+1)
     Go back: Resolve CMP
  end if
  Add optimality cut (s \leftarrow s + 1)
  if x^{\nu}, \theta^{\nu} satisfy optimality cut then
     STOP. x^{\nu} is optimal solution.
  end if
```

L-Shaped Algorithm

```
r, s, \nu \leftarrow 0
while 1 \neq 0 do
  \nu \leftarrow \nu + 1
  Solve Current Master Problem (CMP) \rightarrow x^{
u}, \ \theta^{
u}
  if x^{\nu} not 2.-s. feasible then
     Add feasibility cut (r \leftarrow r+1)
     Go back: Resolve CMP
  end if
  Add optimality cut (s \leftarrow s + 1)
  if x^{\nu}, \theta^{\nu} satisfy optimality cut then
     STOP. x^{\nu} is optimal solution.
  else
     Go back: Resolve CMP
  end if
end while
```

-moping onversity

Decomposition Methods

L-shaped method (Benders' decomposition)

Results

Only finitely many cuts needed to obtain feasibility

Results

- Only finitely many cuts needed to obtain feasibility
- BUT: Number can be large!

Results

- Only finitely many cuts needed to obtain feasibility
- BUT: Number can be large!
- HOWEVER: Feasibility cut has "deepest cut property"

Decomposition Methods

L-shaped method (Benders' decomposition)

Results

- Only finitely many cuts needed to obtain feasibility
- BUT: Number can be large!
- HOWEVER: Feasibility cut has "deepest cut property"
- Algorithm stops after finitely many iterations

Stochastic Optimization

Decomposition Methods

L-shaped method (Benders' decomposition)

QUESTIONS?

What about next week?

