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Stochastic Optimization

Multi-Stage Programming

Basics of Multi-Stage Programming

Information obtained in several ”stages”

Recourse action can be taken in each stage

Recourse action depends on:

→ Information available
→ Previous decisions

Recourse action does not depend on:

→ Information to be released later (6= det. multi-period
optimization)

Objective: Minimize total expected cost

Crucial: Discretization of time and random distribution(s)
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Stochastic Optimization

Multi-Stage Programming

Main Differences to Online Optimization

Statistic Information used

Parameters modeled as random variables

Decision(s) made ”offline”

Actual decision computed (for all scenarios)

Objective: Good solution on average
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Stochastic Optimization

Multi-Stage Programming

Which approach to choose?

Questions to be answered:

Do I have a finite, infinite or undefined number of periods/stages?

Do I have statistical information about the uncertain parameters?

Do I have the infrastructure and/or time to make decisions online?

Will I use my solution once or several times?
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Stochastic Optimization

Multi-Stage Programming

Modeling Multi-Stage Stochastic Programming Problems

General Linear Multi-Stage Model

min
x0≥0

cᵀ0 x0

+Eζ1

[
Q1(x0, ζ1)

]

s.t.

A00x0 ≥ b0,

Qt(x[t−1], ζ[t]) = min
xt≥0

cᵀt xt +Eζt+1|ζ[t]

[
Qt+1(x[t], ζ[t+1])

]
s.t.

t∑
s=0

Ats(ζ[t])xs ≥ bt(ζ[t]).


∀t ∈

{1, . . . , t − 1}

Q(x0, ζ1) = min
x1≥0

cᵀ1 x1

s.t.
1∑

s=0

A1s(ζ1)xs ≥ b1(ζ1).

ζ[t] = (ζ1, . . . , ζt)
x[t−1] = (x0, x1, . . . , xt−1)
x1 = x1(ζ1) ∀t ≥ 1
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Stochastic Optimization

Multi-Stage Programming

Deterministic Reformulation in case of discrete distributions (Main Idea)

Definition

Scenario

Sequence of outcomes ζk1 , . . . , ζ
k
T of ζ1, . . . , ζT

Outcome ζk[T ] of ζ[T ] = (ζ1, . . . , ζT )

Idea

Introduce sequence of decision vectors (xk0 , x
k
1 , . . . , x

k
T ) (∀ scenarios ζk[T ])

Problem

Some decision vectors should be equal (e.g. xk0 = xk
′

0 ∀k , k ′)

Solution

Non-anticipativity constraints: xkt = xk
′

t if ζk[t] = ζk
′

[t]
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Stochastic Optimization

Multi-Stage Programming

Deterministic Reformulation in case of discrete distributions (Main Idea)

Scenario Tree
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Stochastic Optimization

Outer and Inner Approximation Approaches

Aim

Solve Stochastic Programming problems approximately...

1) ...whose objective function is computationally hard to evaluate.

2) ...that involve continuously distributed random parameters.

3) ...that involve too many scenarios.

4) ...whose underlying distribution is unknown (”Black-Box model”).

5) ...are structural difficult (lack of convexity, linearity, etc.).

Stefanie Kosuch Stochastic Optimization 18/44



Stochastic Optimization

Outer and Inner Approximation Approaches

Aim

Solve Stochastic Programming problems approximately...

1) ...whose objective function is computationally hard to evaluate.

2) ...that involve continuously distributed random parameters.

3) ...that involve too many scenarios.

4) ...whose underlying distribution is unknown (”Black-Box model”).

5) ...are structural difficult (lack of convexity, linearity, etc.).

Stefanie Kosuch Stochastic Optimization 18/44



Stochastic Optimization

Outer and Inner Approximation Approaches

Aim

Solve Stochastic Programming problems approximately...

1) ...whose objective function is computationally hard to evaluate.

2) ...that involve continuously distributed random parameters.

3) ...that involve too many scenarios.

4) ...whose underlying distribution is unknown (”Black-Box model”).

5) ...are structural difficult (lack of convexity, linearity, etc.).

Stefanie Kosuch Stochastic Optimization 18/44



Stochastic Optimization

Outer and Inner Approximation Approaches

Aim

Solve Stochastic Programming problems approximately...

1) ...whose objective function is computationally hard to evaluate.

2) ...that involve continuously distributed random parameters.

3) ...that involve too many scenarios.

4) ...whose underlying distribution is unknown (”Black-Box model”).

5) ...are structural difficult (lack of convexity, linearity, etc.).

Stefanie Kosuch Stochastic Optimization 18/44



Stochastic Optimization

Outer and Inner Approximation Approaches

Aim

Solve Stochastic Programming problems approximately...

1) ...whose objective function is computationally hard to evaluate.

2) ...that involve continuously distributed random parameters.

3) ...that involve too many scenarios.

4) ...whose underlying distribution is unknown (”Black-Box model”).

5) ...are structural difficult (lack of convexity, linearity, etc.).

Stefanie Kosuch Stochastic Optimization 18/44



Stochastic Optimization

Outer and Inner Approximation Approaches

Aim

Solve Stochastic Programming problems approximately...

1) ...whose objective function is computationally hard to evaluate.

2) ...that involve continuously distributed random parameters.

3) ...that involve too many scenarios.

4) ...whose underlying distribution is unknown (”Black-Box model”).

5) ...are structural difficult (lack of convexity, linearity, etc.).

Stefanie Kosuch Stochastic Optimization 18/44



Stochastic Optimization

Outer and Inner Approximation Approaches

Outer Approximation

Problem Approximated

Underlying distribution replaced by finite random sample

Deterministic reformulation

Famous example: Sample Average Approach
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Stochastic Optimization

Outer and Inner Approximation Approaches

Inner Approximation

Randomized Solution Algorithm

Sampling during solution process

Either: Find good solution over iterations

Or: Problem approximated over iterations

Famous examples:

→ Stochastic gradient algorithm (Stochastic approximation)
→ Stochastic Decomposition
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Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Outline

1 Multi-Stage Programming
Modeling Multi-Stage Stochastic Programming Problems
Deterministic Reformulation in case of discrete distributions (Main
Idea)

2 Outer and Inner Approximation Approaches
Sample Average Approximation
Stochastic Gradient method
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Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Basic Idea

Sample uniformly N random vectors from distribution

Assign probability pk = 1
N (k = 1, . . . ,N)

Replace underlying distribution by obtained discrete finite
distribution

Solve approximated problem P(χ1, . . . , χN)

Hopefully:

1) x(P(χ1, . . . , χN))→ x∗ as N →∞

2) P{x(P(χ1, . . . , χN)) = x∗} increases as N →∞
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Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Problem type (in general)

min E[f (x , χ)]

s.t. x ∈ X

X independent of distribution of random vector

Includes:

Minimization of expected value

Simple Recourse problems

Two-Stage Programming problems
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Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Problem type (in general)

min E[f (x , χ)]

s.t. x ∈ X

Simple-Recourse problem

min
x∈X

f (x)+
m∑
i=1

di · E
[
[gi (x , χ)]+

]

di > 0 ∀i ∈ {1, . . . ,m}
[x ]+ = max(0, x)
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Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Problem type (in general)

min E[f (x , χ)]

s.t. x ∈ X

Linear Two-Stage Problem

min
x≥0

cT x+E[Q(x , χ)]

s.t. Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x +W (χ)y ≥ h(χ).
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Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Problem type (in general)

min E[f (x , χ)]

s.t. x ∈ X

Does not (in general) include:

Chance-Constrained programming problems
(Feasible set described by CDF)

Multi-Stage Programming (conditional sampling needed)

Stefanie Kosuch Stochastic Optimization 28/44



Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Problem type (in general)

min E[f (x , χ)]

s.t. x ∈ X

Does not (in general) include:

Chance-Constrained programming problems
(Feasible set described by CDF)

Multi-Stage Programming (conditional sampling needed)

Stefanie Kosuch Stochastic Optimization 28/44



Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Problem type (in general)

min E[f (x , χ)]

s.t. x ∈ X

Does not (in general) include:

Chance-Constrained programming problems
(Feasible set described by CDF)

Multi-Stage Programming (conditional sampling needed)

Stefanie Kosuch Stochastic Optimization 28/44



Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Chance-Constrained Stochastic Optimization Problem

min
x∈X

f (x)

s.t. P{G (x , χ) ≤ 0} ≥ p
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Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Deterministic Opt. Model → Stochastic Programming Model

max
x∈X

f (x)

s.t. G (x) ≤ 0 →

min
x∈X

f (x , χ)

s.t. G (x , χ) ≤ 0

χ ∈ Ω ⊆ Rs : random vector
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Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Stochastic Programming Model → Deterministic Equivalent Model

min
x∈X

E[f (x , χ)]

χ ∈ Ω ⊆ Rs : random vector

SAA−−→
min
x∈X

1

N

N∑
k=1

f (x , χk)

χ1, . . . , χN : random sample
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Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Convergence results

x̂N : optimal solution of SAA with N samples (x̂N is random variable)

A: set of optimal solutions of the exact problem

General distributions

Under some mild (technical) assumptions:

distA(x̂N)→ 0 as N →∞ (w.p.1)

Convergence rate: order N−
1
2

∀ε > 0: P{distA(x̂N) ≤ ε} increases exponentially
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Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Convergence results

x̂N : optimal solution of SAA with N samples (x̂N is random variable)

A: set of optimal solutions of the exact problem

Discrete distributions

∀χ ∈ Ω f (·, χ) is convex

E[f (·, χ)] is well defined and is finite valued

X is closed and convex

the exact problem has a unique optimal solution x∗ s.t.

∃c > 0 : ∀x ∈ X : E[f (x , χ)]− E[f (x∗, χ)] ≥ c · dist(x , x∗)

N large enough
wp1
=⇒ SAA has a unique optimal solution x̂N = x∗
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Stochastic Optimization

Outer and Inner Approximation Approaches

Sample Average Approximation

Further results

Sample size (e.g. for ε-exact solutions) (with given probability
bound)

Error bounds
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Stochastic Optimization

Outer and Inner Approximation Approaches

Stochastic Gradient method

Basic Idea

Basically: Gradient method

At each iteration: Sample random parameters

Compute new solution based on this sample

Use gradient of function inside expectation

Hopefully:

1) xk → x∗ as k →∞ w.h.p.
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Problem type (mostly)

min E[f (x , χ)]

s.t. x ∈ X

Where:

X independent of distribution of random vector

X convex set

f (·, χ) convex

f (·, χ) differentiable (nearly everywhere)
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Stochastic Optimization

Outer and Inner Approximation Approaches

Stochastic Gradient method

rk = ∇x f (x , χk)

(εk)k∈N is a σ-sequence

Stochastic Gradient Algorithm

k ← 0
Choose x0 in X
while k < Kmax do

k ← k + 1
Draw χk = (χk

1 , ..., χ
k
n)

Update xk as follows:

xk+1 ← xk + εk rk

Project xk+1 on X
end while

return Best found or last solution
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Stochastic Gradient method

Assumptions

1) ∀x ∈ X : f (x , χ) is a random variable with finite expectation

2) ∀χ ∈ Ω: f (·, χ) is convex, proper, differentiable

3) ∃m > 0 s.t.
∀x ∈ X ,∀χ ∈ Ω : ‖∇x f (x , χ)‖ ≤ m

4) ∃ set of optimal solutions X ∗ and c > 0 s.t.:

∀x ∈ X , x∗ ∈ X ∗ : E[f (x , χ)]− E[f (x∗, χ)] ≥ c · (distX∗(x))2

Theorem

Under assumptions 1) - 4) we have:

lim
k→∞

E
[
(distX∗(x

k))2
]

= 0
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∀x ∈ X , x∗ ∈ X ∗ : E[f (x , χ)]− E[f (x∗, χ)] ≥ c · (distX∗(x))2

Theorem

Let d0 = (distX∗(x
0))2 and εk = 1

ck+ m2

cd0

.

Under assumptions 1) - 4) we have:

E
[
(distX∗(x

k))2
]
≤ 1

c2

m2 k + 1
d0
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QUESTIONS?

What about next week?
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