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Why Two-Stage Programming?
m Feasibility in all scenarios: Conservative solutions
m Chance-Constraints: Infeasibility of solution possible
m Simple Recourse: No actual "recourse” action
m In the end: feasible solution — most realistic?
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Basic structure of Two-Stage Programming Problem
First stage: random parameters unknown

(Pre)-decision taken based on (statistical) information of uncertain
parameters

Objective: Minimize expected total cost

B Between first and second stage: all random parameters come to be
known

Second stage: deterministic problem

[@ Make corrective decision (" recourse”):

— Make solution feasible
— Decrease total cost
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Linear Two-Stage Problem
. T
mp € E[Q(x, x)]
st. Ax>b,

_ . T
Qx,x)=min d'y

x € R™: decision vector of 1% stage
y € R™: decision vectors of 2" stage (recourse action)
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Linear Two-Stage Problem
- T
mp € E[Q(x, x)]
st. Ax>b,
_ . T
O(x,x) = iy @y
st TOIx+ W(x)y =2 h(x).

x € R™: decision vector of 1% stage

y € R™: decision vectors of 2" stage (recourse action)
T(x): Technology matrix

W (x): Recourse matrix
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Deterministic reformulation in case of discrete distributions

Linear Two-Stage Problem
. T
minic LR [Oohd]
st.  Ax > b,
— T
Q(x,x) = i d'y

st. T(x)x+ W(x)y > h(x).

x € R™M: decision vector of 1 stage
y € R™: decision vectors of 2" stage (recourse action)
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Deterministic reformulation in case of discrete distributions

Linear Two-Stage Problem

K
min ¢’ x+ Z PO (x, x)

x>0
= k=1
s.t.  Ax > b,

— ot T
Q(X,x)—rynzlg d'y

st T(x)x+ W(x)y > h(x).

x € R™M: decision vector of 1 stage

y € R™: decision vectors of 2" stage (recourse action)
XY, .. XX € RS: scenarios

P{x = x¥} := p*: probabilities
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Deterministic reformulation in case of discrete distributions

Linear Two-Stage Problem
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H T k k
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- k=1
s.t.  Ax > b,

ky . T
Q(x, x )—rynzlg d'y

st T(X)x+ W )y = h(x").
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K
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min - cTx+ Y p“Q(x, x*)
- k=1
s.t.  Ax > b,

ky . T
Q(x, x )—rynzlg d'y

st TOF)x+ Wy > h(x")
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Deterministic reformulation in case of discrete distributions

Linear Two-Stage Problem

K
. T k k
min c'x+ kz_;p Q(x, x*)

st. Ax> b,
Q(x,x)=min dTy"
yk>0

st TO)x+ W)Y = h(x )
(Vke{l,...,K}).
x € R™M: decision vector of 1 stage
y € R™: decision vectors of 2" stage (recourse action)

XY, .., x € R®: scenarios
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L Two-Stage Programming
Deterministic reformulation in case of discrete distributions

Deterministically Reformulated Linear Two-Stage Problem

K
min ¢’ x+ Zpk (dTyk)

x>0
yk>0 k=1
st. Ax>b, (3a)
TOOx+ WO > h(x")  (Vke{l,...,K}).
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Deterministic reformulation in case of discrete distributions

Deterministically Reformulated Linear Two-Stage Problem

K
min  ¢c'x+ Zpk (dTyk)

x>0
yk_ZO k=1
st. Ax>b, (3a)

T(xX*)x + W(xX)y* > h(x*) (Vke{l,....,K}).
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Main theoretical result

Linear Two-Stage Problem
- T
mp € E[Q(x, x)]
st. Ax>b,
_ . T
O(x,x) = iy @y
st TOIx+ W(x)y =2 h(x).

x € R™: decision vector of 1% stage

y € R™: decision vectors of 2" stage (recourse action)
T(x): Technology matrix

W (x): Recourse matrix
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Basics of Multi-Stage Programming

m Information obtained in several "stages”
m Recourse action can be taken in each stage
m Recourse action depends on:

— Information available
— Previous decisions

m Recourse action does not depend on:
— Information to be released later (# det. multi-period optimization)

Objective: Minimize total expected cost

Crucial: Discretization of time and random distribution(s)
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Information changes over time
Time discretized (periods)
(New) Decision can be taken in each time period

Decision depends on:

— Information available
— Previous decisions
— " Learning process”

Decision does not depend on:
— Information to be released later (# det. multi-period optimization)
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m Do | have statistical information about the uncertain parameters?
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