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Two-Stage Programming

Why Two-Stage Programming?

Feasibility in all scenarios: Conservative solutions

Chance-Constraints: Infeasibility of solution possible

Simple Recourse: No actual ”recourse” action

In the end: feasible solution → most realistic?
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Two-Stage Programming

Basic structure of Two-Stage Programming Problem

1 First stage: random parameters unknown

2 (Pre)-decision taken based on (statistical) information of uncertain
parameters

3 Objective: Minimize expected total cost

4 Between first and second stage: all random parameters come to be
known

5 Second stage: deterministic problem

6 Make corrective decision (”recourse”):

→ Make solution feasible
→ Decrease total cost
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Two-Stage Programming

Linear Two-Stage Problem

min
x≥0

cT x

+E[Q(x , χ)]

s.t.

Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x +W (χ)y ≥ h(χ).

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)
T (χ): Technology matrix
W (χ): Recourse matrix
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Theorem

Given: linear two-stage problem

Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅

(≈ primal and dual feasible feasibility of second-stage problem)

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

sub-differentiable in x.

Stefanie Kosuch Stochastic Optimization 12/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅

(≈ primal and dual feasible feasibility of second-stage problem)

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

sub-differentiable in x.

Stefanie Kosuch Stochastic Optimization 12/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅

(≈ primal and dual feasible feasibility of second-stage problem)

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

sub-differentiable in x.

Stefanie Kosuch Stochastic Optimization 12/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅

(≈ primal and dual feasible feasibility of second-stage problem)

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

sub-differentiable in x.

Stefanie Kosuch Stochastic Optimization 12/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Linear Two-Stage Problem

min
x≥0

cT x +E[Q(x , χ)]

s.t. Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x +W (χ)y ≥ h(χ).

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)
T (χ): Technology matrix
W (χ): Recourse matrix

Stefanie Kosuch Stochastic Optimization 13/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

sub-differentiable in x.

Stefanie Kosuch Stochastic Optimization 14/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

sub-differentiable in x.

Stefanie Kosuch Stochastic Optimization 14/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

sub-differentiable in x.

Stefanie Kosuch Stochastic Optimization 14/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

sub-differentiable in x.

Stefanie Kosuch Stochastic Optimization 14/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

sub-differentiable in x.

Stefanie Kosuch Stochastic Optimization 14/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

sub-differentiable in x.

Stefanie Kosuch Stochastic Optimization 14/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

χ continuously distributed

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

sub-differentiable in x.

Stefanie Kosuch Stochastic Optimization 15/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

χ continuously distributed

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

sub-differentiable in x.

Stefanie Kosuch Stochastic Optimization 15/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

χ continuously distributed

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

continuously differentiable.

Stefanie Kosuch Stochastic Optimization 15/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

χ continuously distributed

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

continuously differentiable.

Stefanie Kosuch Stochastic Optimization 15/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

χ continuously distributed

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

continuously differentiable.

Stefanie Kosuch Stochastic Optimization 15/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

χ finitely discretely distributed

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

subdifferentiable in x,

a polyhedral convex function.

Stefanie Kosuch Stochastic Optimization 16/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

χ finitely discretely distributed

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

subdifferentiable in x,

a polyhedral convex function.

Stefanie Kosuch Stochastic Optimization 16/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

χ finitely discretely distributed

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

subdifferentiable in x,

a polyhedral convex function.

Stefanie Kosuch Stochastic Optimization 16/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

χ finitely discretely distributed

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

subdifferentiable in x,

a polyhedral convex function.

Stefanie Kosuch Stochastic Optimization 16/35



Stochastic Optimization

Two-Stage Programming

Main theoretical result

Theorem

Given: linear two-stage problem
Let:

fixed recourse

E[χ] ∈ R
{λ ∈ Rm2 : d ≥ λW } 6= ∅
(≈ primal and dual feasible feasibility of second-stage problem)

χ finitely discretely distributed

Then E [Q(x , χ)] is

real-valued,

piecewise linear and convex in x,

Lipschitz continuous in x,

subdifferentiable in x,

a polyhedral convex function.

Stefanie Kosuch Stochastic Optimization 16/35



Stochastic Optimization

Multi-Stage Programming

Outline

1 Two-Stage Programming
Deterministic reformulation in case of discrete distributions
Main theoretical result

2 Multi-Stage Programming
Comparison with Online Optimization
Modeling Multi-Stage Stochastic Programming Problems
Deterministic Reformulation in case of discrete distributions (Main
Idea)

Stefanie Kosuch Stochastic Optimization 17/35



Stochastic Optimization

Multi-Stage Programming

Basics of Multi-Stage Programming

Information obtained in several ”stages”

Recourse action can be taken in each stage

Recourse action depends on:

→ Information available
→ Previous decisions

Recourse action does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Objective: Minimize total expected cost

Crucial: Discretization of time and random distribution(s)

Stefanie Kosuch Stochastic Optimization 18/35



Stochastic Optimization

Multi-Stage Programming

Basics of Multi-Stage Programming

Information obtained in several ”stages”

Recourse action can be taken in each stage

Recourse action depends on:

→ Information available
→ Previous decisions

Recourse action does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Objective: Minimize total expected cost

Crucial: Discretization of time and random distribution(s)

Stefanie Kosuch Stochastic Optimization 18/35



Stochastic Optimization

Multi-Stage Programming

Basics of Multi-Stage Programming

Information obtained in several ”stages”

Recourse action can be taken in each stage

Recourse action depends on:

→ Information available
→ Previous decisions

Recourse action does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Objective: Minimize total expected cost

Crucial: Discretization of time and random distribution(s)

Stefanie Kosuch Stochastic Optimization 18/35



Stochastic Optimization

Multi-Stage Programming

Basics of Multi-Stage Programming

Information obtained in several ”stages”

Recourse action can be taken in each stage

Recourse action depends on:

→ Information available
→ Previous decisions

Recourse action does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Objective: Minimize total expected cost

Crucial: Discretization of time and random distribution(s)

Stefanie Kosuch Stochastic Optimization 18/35



Stochastic Optimization

Multi-Stage Programming

Basics of Multi-Stage Programming

Information obtained in several ”stages”

Recourse action can be taken in each stage

Recourse action depends on:

→ Information available

→ Previous decisions

Recourse action does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Objective: Minimize total expected cost

Crucial: Discretization of time and random distribution(s)

Stefanie Kosuch Stochastic Optimization 18/35



Stochastic Optimization

Multi-Stage Programming

Basics of Multi-Stage Programming

Information obtained in several ”stages”

Recourse action can be taken in each stage

Recourse action depends on:

→ Information available
→ Previous decisions

Recourse action does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Objective: Minimize total expected cost

Crucial: Discretization of time and random distribution(s)

Stefanie Kosuch Stochastic Optimization 18/35



Stochastic Optimization

Multi-Stage Programming

Basics of Multi-Stage Programming

Information obtained in several ”stages”

Recourse action can be taken in each stage

Recourse action depends on:

→ Information available
→ Previous decisions

Recourse action does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Objective: Minimize total expected cost

Crucial: Discretization of time and random distribution(s)

Stefanie Kosuch Stochastic Optimization 18/35



Stochastic Optimization

Multi-Stage Programming

Basics of Multi-Stage Programming

Information obtained in several ”stages”

Recourse action can be taken in each stage

Recourse action depends on:

→ Information available
→ Previous decisions

Recourse action does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Objective: Minimize total expected cost

Crucial: Discretization of time and random distribution(s)

Stefanie Kosuch Stochastic Optimization 18/35



Stochastic Optimization

Multi-Stage Programming

Basics of Multi-Stage Programming

Information obtained in several ”stages”

Recourse action can be taken in each stage

Recourse action depends on:

→ Information available
→ Previous decisions

Recourse action does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Objective: Minimize total expected cost

Crucial: Discretization of time and random distribution(s)

Stefanie Kosuch Stochastic Optimization 18/35



Stochastic Optimization

Multi-Stage Programming

Basics of Multi-Stage Programming

Information obtained in several ”stages”

Recourse action can be taken in each stage

Recourse action depends on:

→ Information available
→ Previous decisions

Recourse action does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Objective: Minimize total expected cost

Crucial: Discretization of time and random distribution(s)

Stefanie Kosuch Stochastic Optimization 18/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Outline

1 Two-Stage Programming
Deterministic reformulation in case of discrete distributions
Main theoretical result

2 Multi-Stage Programming
Comparison with Online Optimization
Modeling Multi-Stage Stochastic Programming Problems
Deterministic Reformulation in case of discrete distributions (Main
Idea)

Stefanie Kosuch Stochastic Optimization 19/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Basics of Online Optimization

Information changes over time

Time discretized (periods)

(New) Decision can be taken in each time period

Decision depends on:

→ Information available
→ Previous decisions
→ ”Learning process”

Decision does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Possible objectives:

a) Minimize total cost
b) Average cost not higher than r times ”optimal” cost

Stefanie Kosuch Stochastic Optimization 20/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Basics of Online Optimization

Information changes over time

Time discretized (periods)

(New) Decision can be taken in each time period

Decision depends on:

→ Information available
→ Previous decisions
→ ”Learning process”

Decision does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Possible objectives:

a) Minimize total cost
b) Average cost not higher than r times ”optimal” cost

Stefanie Kosuch Stochastic Optimization 20/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Basics of Online Optimization

Information changes over time

Time discretized (periods)

(New) Decision can be taken in each time period

Decision depends on:

→ Information available
→ Previous decisions
→ ”Learning process”

Decision does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Possible objectives:

a) Minimize total cost
b) Average cost not higher than r times ”optimal” cost

Stefanie Kosuch Stochastic Optimization 20/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Basics of Online Optimization

Information changes over time

Time discretized (periods)

(New) Decision can be taken in each time period

Decision depends on:

→ Information available
→ Previous decisions
→ ”Learning process”

Decision does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Possible objectives:

a) Minimize total cost
b) Average cost not higher than r times ”optimal” cost

Stefanie Kosuch Stochastic Optimization 20/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Basics of Online Optimization

Information changes over time

Time discretized (periods)

(New) Decision can be taken in each time period

Decision depends on:

→ Information available
→ Previous decisions
→ ”Learning process”

Decision does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Possible objectives:

a) Minimize total cost
b) Average cost not higher than r times ”optimal” cost

Stefanie Kosuch Stochastic Optimization 20/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Basics of Online Optimization

Information changes over time

Time discretized (periods)

(New) Decision can be taken in each time period

Decision depends on:

→ Information available

→ Previous decisions
→ ”Learning process”

Decision does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Possible objectives:

a) Minimize total cost
b) Average cost not higher than r times ”optimal” cost

Stefanie Kosuch Stochastic Optimization 20/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Basics of Online Optimization

Information changes over time

Time discretized (periods)

(New) Decision can be taken in each time period

Decision depends on:

→ Information available
→ Previous decisions

→ ”Learning process”

Decision does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Possible objectives:

a) Minimize total cost
b) Average cost not higher than r times ”optimal” cost

Stefanie Kosuch Stochastic Optimization 20/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Basics of Online Optimization

Information changes over time

Time discretized (periods)

(New) Decision can be taken in each time period

Decision depends on:

→ Information available
→ Previous decisions
→ ”Learning process”

Decision does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Possible objectives:

a) Minimize total cost
b) Average cost not higher than r times ”optimal” cost

Stefanie Kosuch Stochastic Optimization 20/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Basics of Online Optimization

Information changes over time

Time discretized (periods)

(New) Decision can be taken in each time period

Decision depends on:

→ Information available
→ Previous decisions
→ ”Learning process”

Decision does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Possible objectives:

a) Minimize total cost
b) Average cost not higher than r times ”optimal” cost

Stefanie Kosuch Stochastic Optimization 20/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Basics of Online Optimization

Information changes over time

Time discretized (periods)

(New) Decision can be taken in each time period

Decision depends on:

→ Information available
→ Previous decisions
→ ”Learning process”

Decision does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Possible objectives:

a) Minimize total cost
b) Average cost not higher than r times ”optimal” cost

Stefanie Kosuch Stochastic Optimization 20/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Basics of Online Optimization

Information changes over time

Time discretized (periods)

(New) Decision can be taken in each time period

Decision depends on:

→ Information available
→ Previous decisions
→ ”Learning process”

Decision does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Possible objectives:

a) Minimize total cost
b) Average cost not higher than r times ”optimal” cost

Stefanie Kosuch Stochastic Optimization 20/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Basics of Online Optimization

Information changes over time

Time discretized (periods)

(New) Decision can be taken in each time period

Decision depends on:

→ Information available
→ Previous decisions
→ ”Learning process”

Decision does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Possible objectives:

a) Minimize total cost

b) Average cost not higher than r times ”optimal” cost

Stefanie Kosuch Stochastic Optimization 20/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Basics of Online Optimization

Information changes over time

Time discretized (periods)

(New) Decision can be taken in each time period

Decision depends on:

→ Information available
→ Previous decisions
→ ”Learning process”

Decision does not depend on:

→ Information to be released later (6= det. multi-period optimization)

Possible objectives:

a) Minimize total cost
b) Average cost not higher than r times ”optimal” cost

Stefanie Kosuch Stochastic Optimization 20/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Similarities

Decision taken over time (stages ↔ periods)

Decision does not depend on information available in future

Stefanie Kosuch Stochastic Optimization 21/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Similarities

Decision taken over time (stages ↔ periods)

Decision does not depend on information available in future

Stefanie Kosuch Stochastic Optimization 21/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Similarities

Decision taken over time (stages ↔ periods)

Decision does not depend on information available in future

Stefanie Kosuch Stochastic Optimization 21/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Solution

Multi-Stage Programming:

Decision vector

Decision for each stage and scenario

Online Optimization:

Policy

Online Algorithm

Stefanie Kosuch Stochastic Optimization 22/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Solution

Multi-Stage Programming:

Decision vector

Decision for each stage and scenario

Online Optimization:

Policy

Online Algorithm

Stefanie Kosuch Stochastic Optimization 22/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Solution

Multi-Stage Programming:

Decision vector

Decision for each stage and scenario

Online Optimization:

Policy

Online Algorithm

Stefanie Kosuch Stochastic Optimization 22/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Solution

Multi-Stage Programming:

Decision vector

Decision for each stage and scenario

Online Optimization:

Policy

Online Algorithm

Stefanie Kosuch Stochastic Optimization 22/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Solution

Multi-Stage Programming:

Decision vector

Decision for each stage and scenario

Online Optimization:

Policy

Online Algorithm

Stefanie Kosuch Stochastic Optimization 22/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Solution

Multi-Stage Programming:

Decision vector

Decision for each stage and scenario

Online Optimization:

Policy

Online Algorithm

Stefanie Kosuch Stochastic Optimization 22/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Solution

Multi-Stage Programming:

Decision vector

Decision for each stage and scenario

Online Optimization:

Policy

Online Algorithm

Stefanie Kosuch Stochastic Optimization 22/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Solution

Multi-Stage Programming:

Decision vector

Decision for each stage and scenario

Online Optimization:

Policy

Online Algorithm

Stefanie Kosuch Stochastic Optimization 22/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Objective

Multi-Stage Programming:

Minimize expected total cost

Online Optimization:

Minimize total cost

Propose ”competitive” online algorithm

Stefanie Kosuch Stochastic Optimization 23/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Objective

Multi-Stage Programming:

Minimize expected total cost

Online Optimization:

Minimize total cost

Propose ”competitive” online algorithm

Stefanie Kosuch Stochastic Optimization 23/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Objective

Multi-Stage Programming:

Minimize expected total cost

Online Optimization:

Minimize total cost

Propose ”competitive” online algorithm

Stefanie Kosuch Stochastic Optimization 23/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Objective

Multi-Stage Programming:

Minimize expected total cost

Online Optimization:

Minimize total cost

Propose ”competitive” online algorithm

Stefanie Kosuch Stochastic Optimization 23/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Objective

Multi-Stage Programming:

Minimize expected total cost

Online Optimization:

Minimize total cost

Propose ”competitive” online algorithm

Stefanie Kosuch Stochastic Optimization 23/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Objective

Multi-Stage Programming:

Minimize expected total cost

Online Optimization:

Minimize total cost

Propose ”competitive” online algorithm

Stefanie Kosuch Stochastic Optimization 23/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Objective

Multi-Stage Programming:

Minimize expected total cost

Online Optimization:

Minimize total cost

Propose ”competitive” online algorithm

Stefanie Kosuch Stochastic Optimization 23/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Modeling

Multi-Stage Programming:

Random variables

Knowledge about distribution

Online Optimization:

Generally no knowledge of structure of input

State sequence

Deterministic formulation

Stefanie Kosuch Stochastic Optimization 24/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Modeling

Multi-Stage Programming:

Random variables

Knowledge about distribution

Online Optimization:

Generally no knowledge of structure of input

State sequence

Deterministic formulation

Stefanie Kosuch Stochastic Optimization 24/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Modeling

Multi-Stage Programming:

Random variables

Knowledge about distribution

Online Optimization:

Generally no knowledge of structure of input

State sequence

Deterministic formulation

Stefanie Kosuch Stochastic Optimization 24/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Modeling

Multi-Stage Programming:

Random variables

Knowledge about distribution

Online Optimization:

Generally no knowledge of structure of input

State sequence

Deterministic formulation

Stefanie Kosuch Stochastic Optimization 24/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Modeling

Multi-Stage Programming:

Random variables

Knowledge about distribution

Online Optimization:

Generally no knowledge of structure of input

State sequence

Deterministic formulation

Stefanie Kosuch Stochastic Optimization 24/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Modeling

Multi-Stage Programming:

Random variables

Knowledge about distribution

Online Optimization:

Generally no knowledge of structure of input

State sequence

Deterministic formulation

Stefanie Kosuch Stochastic Optimization 24/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Modeling

Multi-Stage Programming:

Random variables

Knowledge about distribution

Online Optimization:

Generally no knowledge of structure of input

State sequence

Deterministic formulation

Stefanie Kosuch Stochastic Optimization 24/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Modeling

Multi-Stage Programming:

Random variables

Knowledge about distribution

Online Optimization:

Generally no knowledge of structure of input

State sequence

Deterministic formulation

Stefanie Kosuch Stochastic Optimization 24/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Differences

Modeling

Multi-Stage Programming:

Random variables

Knowledge about distribution

Online Optimization:

Generally no knowledge of structure of input

State sequence

Deterministic formulation

Stefanie Kosuch Stochastic Optimization 24/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Two different views

Multi-Stage programming is...

... a different approach to optimization with information over time
than...

... one way to attack problems in the domain of...

...online optimization.

Stefanie Kosuch Stochastic Optimization 25/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Two different views

Multi-Stage programming is...

... a different approach to optimization with information over time
than...

... one way to attack problems in the domain of...

...online optimization.

Stefanie Kosuch Stochastic Optimization 25/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Two different views

Multi-Stage programming is...

... a different approach to optimization with information over time
than...

... one way to attack problems in the domain of...

...online optimization.

Stefanie Kosuch Stochastic Optimization 25/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Two different views

Multi-Stage programming is...

... a different approach to optimization with information over time
than...

... one way to attack problems in the domain of...

...online optimization.

Stefanie Kosuch Stochastic Optimization 25/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Which approach to choose?

Questions to be answered:

Do I have a finite, infinite or undefined number of periods/stages?

Is information changing or extended over time?

Do I have statistical information about the uncertain parameters?
OR: Do I need/want to learn about uncertainties ”on the fly”?

Is discretization of the random distribution an option?

Do I have the infrastructure and/or time to make decisions online?

Will I use my solution once or several times?

Stefanie Kosuch Stochastic Optimization 26/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Which approach to choose?

Questions to be answered:

Do I have a finite, infinite or undefined number of periods/stages?

Is information changing or extended over time?

Do I have statistical information about the uncertain parameters?
OR: Do I need/want to learn about uncertainties ”on the fly”?

Is discretization of the random distribution an option?

Do I have the infrastructure and/or time to make decisions online?

Will I use my solution once or several times?

Stefanie Kosuch Stochastic Optimization 26/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Which approach to choose?

Questions to be answered:

Do I have a finite, infinite or undefined number of periods/stages?

Is information changing or extended over time?

Do I have statistical information about the uncertain parameters?
OR: Do I need/want to learn about uncertainties ”on the fly”?

Is discretization of the random distribution an option?

Do I have the infrastructure and/or time to make decisions online?

Will I use my solution once or several times?

Stefanie Kosuch Stochastic Optimization 26/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Which approach to choose?

Questions to be answered:

Do I have a finite, infinite or undefined number of periods/stages?

Is information changing or extended over time?

Do I have statistical information about the uncertain parameters?
OR: Do I need/want to learn about uncertainties ”on the fly”?

Is discretization of the random distribution an option?

Do I have the infrastructure and/or time to make decisions online?

Will I use my solution once or several times?

Stefanie Kosuch Stochastic Optimization 26/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Which approach to choose?

Questions to be answered:

Do I have a finite, infinite or undefined number of periods/stages?

Is information changing or extended over time?

Do I have statistical information about the uncertain parameters?
OR: Do I need/want to learn about uncertainties ”on the fly”?

Is discretization of the random distribution an option?

Do I have the infrastructure and/or time to make decisions online?

Will I use my solution once or several times?

Stefanie Kosuch Stochastic Optimization 26/35



Stochastic Optimization

Multi-Stage Programming

Comparison with Online Optimization

Which approach to choose?

Questions to be answered:

Do I have a finite, infinite or undefined number of periods/stages?

Is information changing or extended over time?

Do I have statistical information about the uncertain parameters?
OR: Do I need/want to learn about uncertainties ”on the fly”?

Is discretization of the random distribution an option?

Do I have the infrastructure and/or time to make decisions online?

Will I use my solution once or several times?

Stefanie Kosuch Stochastic Optimization 26/35



Stochastic Optimization

Multi-Stage Programming

Modeling Multi-Stage Stochastic Programming Problems

Outline

1 Two-Stage Programming
Deterministic reformulation in case of discrete distributions
Main theoretical result

2 Multi-Stage Programming
Comparison with Online Optimization
Modeling Multi-Stage Stochastic Programming Problems
Deterministic Reformulation in case of discrete distributions (Main
Idea)

Stefanie Kosuch Stochastic Optimization 27/35



Stochastic Optimization

Multi-Stage Programming

Modeling Multi-Stage Stochastic Programming Problems

General Linear Multi-Stage Model

min
x0≥0

cᵀ0 x0

+Eζ1

[
Q1(x0, ζ1)

]

s.t.

A00x0 ≥ b0,

Qt(x[t−1], ζ[t]) = min
xt≥0

cᵀt xt +Eζt+1|ζ[t]

[
Qt+1(x[t], ζ[t+1])

]
s.t.

t∑
s=0

Ats(ζ[t])xs ≥ bt(ζ[t]).


∀t ∈

{1, . . . , t − 1}

Q1(x0, ζ1) = min
x1≥0

cᵀ1 x1

s.t.
1∑

s=0

A1s(ζ1)xs ≥ b1(ζ1).

ζ[t] = (ζ1, . . . , ζt)
x[t−1] = (x0, x1, . . . , xt−1)
x1 = x1(ζ1) ∀t ≥ 1
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Deterministic Reformulation in case of discrete distributions (Main Idea)

Definition

Scenario

Sequence of outcomes ζk1 , . . . , ζ
k
T of ζ1, . . . , ζT

Outcome ζk[T ] of ζ[T ] = (ζ1, . . . , ζT )

Idea

Introduce sequence of decision vectors (xk
0 , x

k
1 , . . . , x

k
T ) (∀ scenarios ζk[T ])

Problem

Some decision vectors should be equal (e.g. xk
0 = xk′

0 ∀k , k ′)

Solution

Non-anticipativity constraints: xk
t = xk′

t if ζk[t] = ζk
′

[t]
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QUESTIONS?

What about next week?
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