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Stochastic Optimization

Randomness occurs in the constraint function

Deterministic Opt. Model → Stochastic Programming Model

max
x∈X

f (x)

s.t. G (x) ≤ 0 →

min
x∈X

f (x)

s.t. G (x , χ) ≤ 0

χ ∈ Ω ⊆ Rs : random vector
G : Rn ×Rs → Rm

G (x , χ) = (g1(x , χ), . . . , gm(x , χ))
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Stochastic Optimization

Randomness occurs in the constraint function

Question

What means ”feasible solution” in case of uncertain parameters in the
constraint function(s)?

Feasible in all possible cases → conservative/infeasible/trivial

Feasible with high probability → chance-constraint 3

Average violation not too bad → simple recourse 3

Feasible after correction has been made → multi-stage

Stefanie Kosuch Stochastic Optimization 5/37



Stochastic Optimization

Randomness occurs in the constraint function

Question

What means ”feasible solution” in case of uncertain parameters in the
constraint function(s)?

Feasible in all possible cases → conservative/infeasible/trivial

Feasible with high probability → chance-constraint 3

Average violation not too bad → simple recourse 3

Feasible after correction has been made → multi-stage

Stefanie Kosuch Stochastic Optimization 5/37



Stochastic Optimization

Randomness occurs in the constraint function

Question

What means ”feasible solution” in case of uncertain parameters in the
constraint function(s)?

Feasible in all possible cases → conservative/infeasible/trivial

Feasible with high probability → chance-constraint 3

Average violation not too bad → simple recourse 3

Feasible after correction has been made

→ multi-stage

Stefanie Kosuch Stochastic Optimization 5/37



Stochastic Optimization

Randomness occurs in the constraint function

Question

What means ”feasible solution” in case of uncertain parameters in the
constraint function(s)?

Feasible in all possible cases → conservative/infeasible/trivial

Feasible with high probability → chance-constraint 3

Average violation not too bad → simple recourse 3

Feasible after correction has been made → multi-stage

Stefanie Kosuch Stochastic Optimization 5/37



Stochastic Optimization

Simple Recourse problems - Useful Theorems

Outline

1 Randomness occurs in the constraint function

2 Simple Recourse problems - Useful Theorems

3 Two-Stage Programming
Example: TSKP
Simple Recourse as a special case of Two-Stage problems
Deterministic reformulation in case of discrete distributions
Main theoretical result

Stefanie Kosuch Stochastic Optimization 6/37



Stochastic Optimization

Simple Recourse problems - Useful Theorems

Basic Idea(s)

Allow violation

Restrict average ”amount of violation”

Introduce penalty per ”violation unit”

Find good trade-off: cost ↔ penalty
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Stochastic Optimization

Simple Recourse problems - Useful Theorems

Simple-Recourse problem

min
x∈X

f (x)

+
m∑
i=1

di · E
[
[gi (x , χ)]+

]

di > 0 ∀i ∈ {1, . . . ,m}
[x ]+ = max(0, x)
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Stochastic Optimization

Simple Recourse problems - Useful Theorems

Theorem

Let

γ(x) := E [[g(x , χ)]+]

E [g(x , χ)] <∞ ∀x ∈ Rn

Then the following holds:

g(·, χ̂) is convex ∀χ̂ =⇒ γ is convex
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Stochastic Optimization

Simple Recourse problems - Useful Theorems

Theorem

Let

γ(x) := E [[a(χ)x − b]+]

Φ: cumulative distribution function of a(χ)x − b

E [a(χ)x − b] <∞ ∀x ∈ Rn

Then the following holds:

1 γ is convex

2 For all x ∈ Rn γ(x) <∞.

3 γ is Lipschitz continuous.

4 γ is differentiable wherever Φ is continuous.

5 a(χ)x − b discretely distributed ⇒ γ is piecewise linear.
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Stochastic Optimization

Two-Stage Programming

Why Two-Stage Programming?

Feasibility in all scenarios: Conservative solutions

Chance-Constraints: Infeasibility of solution possible

Simple Recourse: No actual ”recourse” action

In the end: feasible solution

→ most realistic?

Costs/rewards of recourse action taken into account
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Stochastic Optimization

Two-Stage Programming

Basic structure of Two-Stage Programming Problem

1 First stage: random parameters unknown

2 (Pre)-decision taken based on (statistical) information of uncertain
parameters

3 Objective: Minimize expected total cost

4 Between first and second stage: all random parameters come to be
known

5 Second stage: deterministic problem

6 Make corrective decision (”recourse”):

→ Make solution feasible
→ Decrease total cost
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Stochastic Optimization

Two-Stage Programming

General Two-Stage Problem

min
x∈X

f 1(x)

+E[Q(x , χ)]

s.t.

G 1(x) < 0

Q(x , χ) = min
y∈Y

f 2(x , y),

s.t. G(x , y , χ) ≤ 0.

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)
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Example: TSKP

$4-8 12-15 kg

$2-6 2-3 kg

$1-2 1-4 kg

$2-5 1-3 kg

$10-15 4-7 kg

?
15 kg
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Stochastic Optimization

Two-Stage Programming

Example: TSKP

Example: TSKP

Two-Stage Stochastic Knapsack problem

First stage: items can be put in the knapsack

First stage ←→ second stage: item weights are revealed

Second stage: The decision can/has to be corrected

Correction of the decision causes penalty
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Two-Stage Knapsack Problem

(TSKP) max
x∈{0,1}n

n∑
i=1

rixi

+E[Q(x , χ)]

s.t.

Q(x , χ) = max
y+,y−∈{0,1}n

n∑
i=1

riy
+
i −

n∑
i=1

diy
−
i

s.t. y+
j ≤ 1− xj (j = 1, . . . , n),

y−j ≤ xj (j = 1, . . . , n),
n∑

i=1

(xi + y+
i − y−i )χi ≤ c.

x ∈ Rn: decision vector of 1st stage
y+, y− ∈ Rn: decision vectors of 2nd stage (recourse action)
ri < ri, di > ri
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Example: TSKP

Linear Two-Stage Problem

min
x≥0

cT x

+E[Q(x , χ)]

s.t.

Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x +W (χ)y ≥ h(χ).

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)
T (χ): Technology matrix
W (χ): Recourse matrix

Stefanie Kosuch Stochastic Optimization 22/37



Stochastic Optimization

Two-Stage Programming

Example: TSKP

Linear Two-Stage Problem

min
x≥0

cT x

+E[Q(x , χ)]

s.t.

Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x +W (χ)y ≥ h(χ).

x ∈ Rn1 : decision vector of 1st stage

y ∈ Rn2 : decision vectors of 2nd stage (recourse action)
T (χ): Technology matrix
W (χ): Recourse matrix

Stefanie Kosuch Stochastic Optimization 22/37



Stochastic Optimization

Two-Stage Programming

Example: TSKP

Linear Two-Stage Problem

min
x≥0

cT x

+E[Q(x , χ)]

s.t. Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x +W (χ)y ≥ h(χ).

x ∈ Rn1 : decision vector of 1st stage

y ∈ Rn2 : decision vectors of 2nd stage (recourse action)
T (χ): Technology matrix
W (χ): Recourse matrix

Stefanie Kosuch Stochastic Optimization 22/37



Stochastic Optimization

Two-Stage Programming

Example: TSKP

Linear Two-Stage Problem

min
x≥0

cT x +E[Q(x , χ)]

s.t. Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x +W (χ)y ≥ h(χ).

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)

T (χ): Technology matrix
W (χ): Recourse matrix

Stefanie Kosuch Stochastic Optimization 22/37



Stochastic Optimization

Two-Stage Programming

Example: TSKP

Linear Two-Stage Problem

min
x≥0

cT x +E[Q(x , χ)]

s.t. Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x +W (χ)y ≥ h(χ).

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)

T (χ): Technology matrix
W (χ): Recourse matrix

Stefanie Kosuch Stochastic Optimization 22/37



Stochastic Optimization

Two-Stage Programming

Example: TSKP

Linear Two-Stage Problem

min
x≥0

cT x +E[Q(x , χ)]

s.t. Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x +W (χ)y ≥ h(χ).

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)
T (χ): Technology matrix
W (χ): Recourse matrix

Stefanie Kosuch Stochastic Optimization 22/37



Stochastic Optimization

Two-Stage Programming

Example: TSKP

Linear Two-Stage Problem

min
x≥0

cT x +E[Q(x , χ)]

s.t. Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x +W (χ)y ≥ h(χ).

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)
T (χ): Technology matrix
W (χ): Recourse matrix

Stefanie Kosuch Stochastic Optimization 22/37



Stochastic Optimization

Two-Stage Programming

Example: TSKP

Linear Two-Stage Problem

min
x≥0

cT x +E[Q(x , χ)]

s.t. Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x +W (χ)y ≥ h(χ).

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)
T (χ): Technology matrix
W (χ): Recourse matrix

Stefanie Kosuch Stochastic Optimization 22/37



Stochastic Optimization

Two-Stage Programming

Example: TSKP

Linear Two-Stage Problem

min
x≥0

cT x +E[Q(x , χ)]

s.t. Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x +W (χ)y ≥ h(χ).

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)
T (χ): Technology matrix
W (χ): Recourse matrix

Stefanie Kosuch Stochastic Optimization 22/37



Stochastic Optimization

Two-Stage Programming

Simple Recourse as a special case of Two-Stage problems

Outline
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2 Simple Recourse problems - Useful Theorems
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Simple Recourse as a special case of Two-Stage problems

Linear Simple-Recourse problem

min
x∈X

cT x +
m∑
i=1

di · E
[
[hi (χ)− Ti (χ)x ]+

]

Equivalent formulation in two stages

min
x≥0

cT x + E[Q(x , χ)]

s.t. Q(x , χ) = min
y≥0

dT y

s.t. h(χ)− T (χ)x ≤ y .

x ∈ Rn: decision vector of 1st stage
y ∈ Rm: decision vectors of 2nd stage (”violation”)
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Simple Recourse as a special case of Two-Stage problems

Linear Two-Stage Problem
min
x≥0

cT x+E[Q(x , χ)]

s.t. Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x +W (χ)y ≥ h(χ).

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)

Linear Simple Recourse Problem in two stages

min
x≥0

cT x + E[Q(x , χ)]

s.t. Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x + y ≥ h(χ).

x ∈ Rn: decision vector of 1st stage
y ∈ Rm: decision vectors of 2nd stage (”violation”)

In: Identity matrix of dimension n
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Simple Recourse as a special case of Two-Stage problems

Simple Recourse Problem formulated as Two-Stage Problem

No first stage constraints.

# second stage variables = # constrains

W (χ) = W = In

Stefanie Kosuch Stochastic Optimization 26/37



Stochastic Optimization

Two-Stage Programming

Simple Recourse as a special case of Two-Stage problems

Simple Recourse Problem formulated as Two-Stage Problem

No first stage constraints.

# second stage variables = # constrains

W (χ) = W = In

Stefanie Kosuch Stochastic Optimization 26/37



Stochastic Optimization

Two-Stage Programming

Simple Recourse as a special case of Two-Stage problems

Simple Recourse Problem formulated as Two-Stage Problem

No first stage constraints.

# second stage variables = # constrains

W (χ) = W = In

Stefanie Kosuch Stochastic Optimization 26/37



Stochastic Optimization

Two-Stage Programming

Deterministic reformulation in case of discrete distributions

Outline

1 Randomness occurs in the constraint function

2 Simple Recourse problems - Useful Theorems

3 Two-Stage Programming
Example: TSKP
Simple Recourse as a special case of Two-Stage problems
Deterministic reformulation in case of discrete distributions
Main theoretical result

Stefanie Kosuch Stochastic Optimization 27/37



Stochastic Optimization

Two-Stage Programming

Deterministic reformulation in case of discrete distributions

Linear Two-Stage Problem

min
x≥0

cT x + E[Q(x , χ)]

s.t. Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x + W (χ)y ≥ h(χ).

.

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)

χ1, . . . , χK ∈ Rs : scenarios
P{χ = χk} := pk : probabilities
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{λ ∈ Rm2 : d ≥ λW } 6= ∅

(→ second-stage problem primal and dual feasible)

Then E [Q(x , χ)] is
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sub-differentiable in x.
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Linear Two-Stage Problem

min
x≥0

cT x +E[Q(x , χ)]

s.t. Ax ≥ b,

Q(x , χ) = min
y≥0

dT y

s.t. T (χ)x +W (χ)y ≥ h(χ).

x ∈ Rn1 : decision vector of 1st stage
y ∈ Rn2 : decision vectors of 2nd stage (recourse action)
T (χ): Technology matrix
W (χ): Recourse matrix
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QUESTIONS?

What about next week?
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