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Stochastic Optimization

Randomness occurs in the constraint function

Deterministic Opt. Model → Stochastic Programming Model

max
x∈X

f (x)

s.t. G (x) ≤ 0 →

min
x∈X

f (x)

s.t. G (x , χ) ≤ 0

χ ∈ Ω ⊆ Rs : random vector
G : Rn ×Rs → Rm

G (x , χ) = (g1(x , χ), . . . , gm(x , χ))
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Stochastic Optimization

Randomness occurs in the constraint function

Question

What means ”feasible solution” in case of uncertain parameters in the
constraint function(s)?

Feasible in all possible cases → conservative/infeasible/trivial

Feasible with high probability → chance-constraint 3

Average violation not too bad → simple recourse

Feasible after correction has been made → multi-stage
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Stochastic Optimization

Convexity of Chance-Constraints

Chance-Constrained Stochastic Optimization Problem

min
x∈X

f (x)

s.t. P{G (x , χ) ≤ 0} ≥ p
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Stochastic Optimization

Convexity of Chance-Constraints

Definitions

Definition (Concave Function)

A function f : Rn → R is called concave if for all x , y ∈ dom(f ) and all
t ∈ [0, 1] it is

f (tx + (1− t)y) ≥ tf (x) + (1− t)f (y)

Definition (Log-Concave Function)

A function f : Rn → R is called logarithmic concave (log-concave) if
log(f ) is a concave function.

Property

A function f : Rn → R is log-concave iff for all x , y ∈ dom(f ) and all
θ ∈ [0, 1] it is

f (θx + (1− θ)y) ≥ f (x)θf (y)(1−θ)
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Stochastic Optimization

Convexity of Chance-Constraints

Main Results by Prékopa

Theorem (Prékopa ’72)

Let gi (x , y) (i = 1, . . . ,m) be concave functions on Rn ×Rs (where x
is an n-dimensional and y an s-dimensional vector). Let further χ be an
s-dimensional random vector with logarithmic concave probability
distribution. Then, the left hand side x-function of the joint
chance-constraint

P{gi (x , χ) ≥ 0, i = 1, . . . , r} ≥ p (1)

is logarithmic concave in the entire space Rn.
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Convexity of Chance-Constraints

Main Results by Prékopa

Corollary (Prékopa ’72)

Let gi (x , y) (i = 1, . . . ,m) be concave functions on Rn ×Rs (where x
is an n-dimensional and y an s-dimensional vector). Let further χ be an
s-dimensional random vector with logarithmic concave probability
distribution. Then the joint chance-constraint

P{gi (x , χ) ≥ 0, i = 1, . . . , r} ≥ p (2)

defines a convex set.
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Stochastic Optimization

Convexity of Chance-Constraints

Generalized Results

Definition (Quasi-Concave Function)

A function f : Rn → R is called quasi-concave if for all x , y ∈ dom(f )
and all t ∈ [0, 1] it is

f (tx + (1− t)y) ≥ min(f (x), f (y))

Generalization by Tamm (’76/’77)

Prékopa’s results stay valid if the gi ’s are only quasi-concave!
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Stochastic Optimization

Simple Recourse problems

Basic Idea(s)

Allow violation

Restrict average ”amount of violation”

Introduce penalty per ”violation unit”

Find good trade-off: cost ↔ penalty
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Stochastic Optimization

Simple Recourse problems

Simple-Recourse problem

min
x∈X

f (x)

+
m∑
i=1

di · E
[
[gi (x , χ)]+

]

di > 0 ∀i ∈ {1, . . . ,m}
[x ]+ = max(0, x)
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Stochastic Optimization

Simple Recourse problems

Question

Why not choosing an expectation-constrained model?

Expectation-Constrained Optimization Problem

min
x∈X

f (x)

s.t. E
[
[gi (x , χ)]+

]
≤ δi ∀i = 1, . . . ,m

Answer

No difference between ”small” and ”big” average violation.

Single objective.

No ”flexibility”.
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Stochastic Optimization

Simple Recourse problems

Advantages:

Costs in case of violation taken into account

”Magnitude” of violation can be controlled

Disadvantages:

Probability of violation not restricted

Computation of E [[gi (x , χ)]+] in gen. difficult
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Stochastic Optimization

Deterministic Reformulations (Special cases)

Outline

1 Randomness occurs in the constraint function

2 Convexity of Chance-Constraints
Definitions
Main Results by Prékopa
Generalized Results

3 Simple Recourse problems

4 Deterministic Reformulations (Special cases)

5 Useful Theorems
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Stochastic Optimization

Deterministic Reformulations (Special cases)

Discrete Finite Distribution

Simple-Recourse Problem

min
x∈X

f (x) +
m∑
i=1

di ·E
[
[gi (x , χ)]

+]
χ1, . . . , χK ∈ Rs : scenarios
P{χ = χk} := pk : probabilities

Reformulate Problem Deterministically

min
x∈X

f (x) +
m∑
i=1

di ·
K∑

k=1

[gi (x , χ
k)]+
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Stochastic Optimization

Deterministic Reformulations (Special cases)

Discrete Finite Distribution II

Deterministically reformulated problem

min
x∈X

f (x) +
m∑
i=1

di ·
K∑

k=1

[gi (x , χk)]+

Good news

f (·), gi (·, χ̂) convex (∀χ̂, ∀i ∈ {1, . . . , n})
=⇒ Objective function convex

f (χ̂), gi (·, χ̂) linear (∀χ̂, ∀i ∈ {1, . . . , n})
=⇒ Objective function piecewise linear

Problems

?
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Stochastic Optimization

Deterministic Reformulations (Special cases)

gi linear / Normal Distribution / Independence

Simple-Recourse Problem

min
x∈X

f (x) +
m∑
i=1

di · E
[
[ai (χ)x − bi ]

+
]

ai (χ) ∈ Rn: random vector with ind. normally distr. entries
aij(χ) ∼ N (µi

j , σ
i
j )
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Stochastic Optimization

Deterministic Reformulations (Special cases)

gi linear / Normal Distribution / Independence II

ϕ: Density function of standard normal distribution
Φ: Cumulative distribution function of standard normal distribution

µi
x :=

∑n
j=1 µ

i
jxj

σi
x :=

√∑n
j=1(σi

j )
2x2

j

Deterministically reformulated problem

min
x∈X

f (x) +
m∑
i=1

di ·
[
σi
x · ϕ

(
bi − µi

x

σi
x

)
− (bi − µi

x) ·
[

1− Φ

(
bi − µi

x

σi
x

)]]
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Stochastic Optimization

Deterministic Reformulations (Special cases)

gi linear / Normal Distribution / Independence III

Deterministically reformulated problem

min
x∈X

f (x) +
m∑
i=1

di ·
[
σi
x · ϕ

(
bi − µi

x

σi
x

)
− (bi − µi

x) ·
[

1− Φ

(
bi − µi

x

σi
x

)]]

Good news

Objective function evaluation easy.

f convex =⇒ Objective function convex.

Objective function differentiable.

Problems

No analytic description.
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Stochastic Optimization

Deterministic Reformulations (Special cases)

G linear / Poisson Distribution / Independence

Simple-Recourse Problem

min
x∈X

f (x) + d · E
[
[χT x − b]+

]
χ ∈ Rn: random vector with independent Poisson distr. entries
µ: Vector of means of χ

χT x : Poisson with mean µ̂ = µT x

Deterministically reformulated problem

min
x∈X

f (x) + d ·
∞∑
k=1

e−µ̂µ̂k

k!
[k − b]+

s.t. µ̂ = µT x
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Theorem

Let

γ(x) := E [[g(x , χ)]+]

E [g(x , χ)] <∞ ∀x ∈ Rn

Then the following holds:

g(·, χ̂) is convex ∀χ̂ =⇒ γ is convex
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Φ: cumulative distribution function of of a(χ)x − b
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Then the following holds:
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3 γ is Lipschitz continuous.

4 γ is differentiable wherever Φ is continuous.

5 a(χ)x − b discretely distributed ⇒ γ is piecewise linear.
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Useful Theorems

QUESTIONS?

What about next week?
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