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T )
st. G(x)<0

x € Q C R®: random
G:R"xR°*— R"™

G(X’ X) = (gl(X7X), R
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, 8m(X, X))
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Generalization by Tamm ('76/'77)

Prékopa’s results stay valid if the g;'s are only quasi-concave!
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)r(r;i)rg f(x) + ; d;i - E [[gi(x, x)]"]

md>0Vie{l,... m}

m [x]t = max(0, x)
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min  f(x)

xeX
s.t. E [[g,(X,X)]+] < (5,' Vi= 1,...,m

Answer
m No difference between "small” and "big" average violation.
m Single objective.
m No "flexibility”.

Linkdping University

Stefanie Kosuch Stochastic Optimization 21/33



Stochastic Optimization

L Simple Recourse problems

Advantages:

Stochastic Optimization



Stochastic Optimization
L Simple Recourse problems

Advantages:

m Costs in case of violation taken into account

oK

Linkdping University

Stefanie Kosuch Stochastic Optimization



Stochastic Optimization
L Simple Recourse problems

Advantages:
m Costs in case of violation taken into account

m "Magnitude” of violation can be controlled

x

Linkdping University

Stefanie Kosuch Stochastic Optimization



Stochastic Optimization
L Simple Recourse problems

Advantages:
m Costs in case of violation taken into account

m "Magnitude” of violation can be controlled

x

Linkdping University

Stefanie Kosuch Stochastic Optimization



Stochastic Optimization
L Simple Recourse problems

Advantages:
m Costs in case of violation taken into account

m "Magnitude” of violation can be controlled

Disadvantages:

N
e
Linkdping University

Stefanie Kosuch Stochastic Optimization z



Stochastic Optimization
L Simple Recourse problems

Advantages:
m Costs in case of violation taken into account

m "Magnitude” of violation can be controlled

Disadvantages:

m Probability of violation not restricted

N
L IS
Linkdping University

Stefanie Kosuch Stochastic Optimization 22/33



Stochastic Optimization
L Simple Recourse problems

Advantages:
m Costs in case of violation taken into account

m "Magnitude” of violation can be controlled

Disadvantages:

m Probability of violation not restricted

m Computation of E [[gi(x, x)]"] in gen. difficult
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