Stochastic Optimization IDA PhD course 2011ht

Stefanie Kosuch

PostDok at TCSLab www.kosuch.eu/stefanie/

 Lecture: Simple Recourse Problems 03. November 2011

- Definitions
- Main Results by Prékopa
- Generalized Results

- Definitions
- Main Results by Prékopa
- Generalized Results
- 3 Simple Recourse problems

- Definitions
- Main Results by Prékopa
- Generalized Results
- 3 Simple Recourse problems
- 4 Deterministic Reformulations (Special cases)

- Definitions
- Main Results by Prékopa
- Generalized Results
- 3 Simple Recourse problems
- 4 Deterministic Reformulations (Special cases)
- 5 Useful Theorems

Outline

1 Randomness occurs in the constraint function

- 2 Convexity of Chance-Constraints
 - Definitions
 - Main Results by Prékopa
 - Generalized Results
- 3 Simple Recourse problems
- 4 Deterministic Reformulations (Special cases)

5 Useful Theorems

$\mathsf{Deterministic}~\mathsf{Opt}.~\mathsf{Model}\to\mathsf{Stochastic}~\mathsf{Programming}~\mathsf{Model}$

$$\begin{array}{ll} \max_{x \in X} \quad f(x) & \min_{x \in X} \quad f(x) \\ \text{s.t.} \quad G(x) \le 0 & \longrightarrow & \text{s.t.} \quad G(x, \chi) \le 0 \end{array}$$

$\mathsf{Deterministic}\ \mathsf{Opt}.\ \mathsf{Model} \to \mathsf{Stochastic}\ \mathsf{Programming}\ \mathsf{Model}$

$$\begin{array}{ll} \max_{x \in X} \quad f(x) & \min_{x \in X} \quad f(x) \\ \text{s.t.} \quad \mathbf{G}(x) \leq 0 & _ & \text{s.t.} \quad \mathbf{G}(x, \chi) \leq 0 \end{array}$$

$$\begin{split} &\chi \in \Omega \subseteq \mathbb{R}^s: \text{ random vector} \\ & \boldsymbol{\mathsf{G}}: \mathbb{R}^n \times \mathbb{R}^s \to \mathbb{R}^m \\ & \boldsymbol{\mathsf{G}}(x,\chi) = (g_1(x,\chi), \dots, g_m(x,\chi)) \end{split}$$

What means "feasible solution" in case of uncertain parameters in the constraint function(s)?

Feasible in all possible cases

What means "feasible solution" in case of uncertain parameters in the constraint function(s)?

■ Feasible in all possible cases → conservative/infeasible/trivial

- \blacksquare Feasible in all possible cases \rightarrow conservative/infeasible/trivial
- Feasible with high probability

- \blacksquare Feasible in all possible cases \rightarrow conservative/infeasible/trivial
- Feasible with high probability \rightarrow chance-constraint

- \blacksquare Feasible in all possible cases \rightarrow conservative/infeasible/trivial
- \blacksquare Feasible with high probability \rightarrow chance-constraint \checkmark

- \blacksquare Feasible in all possible cases \rightarrow conservative/infeasible/trivial
- \blacksquare Feasible with high probability \rightarrow chance-constraint \checkmark
- Average violation not too bad

- \blacksquare Feasible in all possible cases \rightarrow conservative/infeasible/trivial
- \blacksquare Feasible with high probability \rightarrow chance-constraint \checkmark
- Average violation not too bad \rightarrow simple recourse

- \blacksquare Feasible in all possible cases \rightarrow conservative/infeasible/trivial
- \blacksquare Feasible with high probability \rightarrow chance-constraint \checkmark
- \blacksquare Average violation not too bad \rightarrow simple recourse
- Feasible after correction has been made

- \blacksquare Feasible in all possible cases \rightarrow conservative/infeasible/trivial
- \blacksquare Feasible with high probability \rightarrow chance-constraint \checkmark
- Average violation not too bad \rightarrow simple recourse
- Feasible after correction has been made \rightarrow multi-stage

- \blacksquare Feasible in all possible cases \rightarrow conservative/infeasible/trivial
- \blacksquare Feasible with high probability \rightarrow chance-constraint \checkmark
- Average violation not too bad \rightarrow simple recourse
- \blacksquare Feasible after correction has been made \rightarrow multi-stage

Outline

1 Randomness occurs in the constraint function

2 Convexity of Chance-Constraints

- Definitions
- Main Results by Prékopa
- Generalized Results

3 Simple Recourse problems

4 Deterministic Reformulations (Special cases)

5 Useful Theorems

Convexity of Chance-Constraints

Chance-Constrained Stochastic Optimization Problem

Chance-Constrained Stochastic Optimization Problem

$$\min_{x \in X} \quad f(x)$$
s.t. $\mathbb{P}\{G(x, \chi) \le 0\} \ge p$

Chance-Constrained Stochastic Optimization Problem

$$\min_{x \in X} \quad f(x)$$
s.t. $\mathbb{P}\{G(x, \chi) \le 0\} \ge p$

Outline

1 Randomness occurs in the constraint function

2 Convexity of Chance-Constraints

- Definitions
- Main Results by Prékopa
- Generalized Results
- 3 Simple Recourse problems
- 4 Deterministic Reformulations (Special cases)

5 Useful Theorems

Convexity of Chance-Constraints

Definition (Concave Function)

Convexity of Chance-Constraints

Definition (Concave Function)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **concave** if for all $x, y \in dom(f)$ and all $t \in [0, 1]$ it is

$$f(tx+(1-t)y) \geq tf(x)+(1-t)f(y)$$

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **concave** if for all $x, y \in dom(f)$ and all $t \in [0, 1]$ it is

$$f(tx + (1 - t)y) \ge tf(x) + (1 - t)f(y)$$

Definition (Log-Concave Function)

Convexity of Chance-Constraints

Definition (Concave Function)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **concave** if for all $x, y \in dom(f)$ and all $t \in [0, 1]$ it is

$$f(tx+(1-t)y) \geq tf(x)+(1-t)f(y)$$

Definition (Log-Concave Function)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **logarithmic concave (log-concave)** if $\log(f)$ is a concave function.

Convexity of Chance-Constraints

Definition (Concave Function)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **concave** if for all $x, y \in dom(f)$ and all $t \in [0, 1]$ it is

$$f(tx+(1-t)y) \geq tf(x)+(1-t)f(y)$$

Definition (Log-Concave Function)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **logarithmic concave (log-concave)** if $\log(f)$ is a concave function.

Property

Linköping University

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **concave** if for all $x, y \in dom(f)$ and all $t \in [0, 1]$ it is

$$f(tx+(1-t)y) \geq tf(x)+(1-t)f(y)$$

Definition (Log-Concave Function)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **logarithmic concave (log-concave)** if $\log(f)$ is a concave function.

Property

A function $f : \mathbb{R}^n \to \mathbb{R}$ is log-concave iff for all $x, y \in dom(f)$ and all $\theta \in [0, 1]$ it is $f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{(1 - \theta)}$

Linköping University

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called log-concave if $\log(f)$ is a concave function.

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called log-concave if $\log(f)$ is a concave function.

Definition (Log-Concave Probability Distribution)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called log-concave if $\log(f)$ is a concave function.

Definition (Log-Concave Probability Distribution)

A continuous probability distribution is called a **log-concave probability distribution** if the corresponding density function is log-concave.

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called log-concave if $\log(f)$ is a concave function.

Definition (Log-Concave Probability Distribution)

A continuous probability distribution is called a **log-concave probability distribution** if the corresponding density function is log-concave.

Convexity of Chance-Constraints

Outline

1 Randomness occurs in the constraint function

2 Convexity of Chance-Constraints

- Definitions
- Main Results by Prékopa
- Generalized Results
- 3 Simple Recourse problems
- 4 Deterministic Reformulations (Special cases)

5 Useful Theorems

Theorem (Prékopa '72)

Let $g_i(x, y)$ (i = 1, ..., m) be concave functions on $\mathbb{R}^n \times \mathbb{R}^s$ (where x is an n-dimensional and y an s-dimensional vector). Let further χ be an s-dimensional random vector with logarithmic concave probability distribution. Then, the left hand side x-function of the joint chance-constraint

$$\mathbb{P}\{g_i(x,\chi) \ge 0, i = 1, \dots, r\} \ge p \tag{1}$$

└─ Main Results by Prékopa

Theorem (Prékopa '72)

Let $g_i(x, y)$ (i = 1, ..., m) be concave functions on $\mathbb{R}^n \times \mathbb{R}^s$ (where x is an n-dimensional and y an s-dimensional vector). Let further χ be an s-dimensional random vector with logarithmic concave probability distribution. Then, the left hand side x-function of the joint chance-constraint

$$\mathbb{P}\{g_i(x,\chi) \ge 0, i = 1, \dots, r\} \ge p \tag{1}$$

Theorem (Prékopa '72)

Let $g_i(x, y)$ (i = 1, ..., m) be concave functions on $\mathbb{R}^n \times \mathbb{R}^s$ (where x is an n-dimensional and y an s-dimensional vector). Let further χ be an s-dimensional random vector with logarithmic concave probability distribution. Then, the left hand side x-function of the joint chance-constraint

$$\mathbb{P}\{g_i(x,\chi) \ge 0, i = 1, \dots, r\} \ge p \tag{1}$$

Theorem (Prékopa '72)

Let $g_i(x, y)$ (i = 1, ..., m) be concave functions on $\mathbb{R}^n \times \mathbb{R}^s$ (where x is an n-dimensional and y an s-dimensional vector). Let further χ be an s-dimensional random vector with logarithmic concave probability distribution. Then, the left hand side x-function of the joint chance-constraint

$$\mathbb{P}\{g_i(x,\chi) \ge 0, i = 1, \dots, r\} \ge p \tag{1}$$

Main Results by Prékopa

Corollary (Prékopa '72)

Let $g_i(x, y)$ (i = 1, ..., m) be concave functions on $\mathbb{R}^n \times \mathbb{R}^s$ (where x is an n-dimensional and y an s-dimensional vector). Let further χ be an s-dimensional random vector with logarithmic concave probability distribution. Then the joint chance-constraint

$$\mathbb{P}\{g_i(x,\chi) \ge 0, i = 1, \dots, r\} \ge p \tag{2}$$

Main Results by Prékopa

Corollary (Prékopa '72)

Let $g_i(x, y)$ (i = 1, ..., m) be concave functions on $\mathbb{R}^n \times \mathbb{R}^s$ (where x is an n-dimensional and y an s-dimensional vector). Let further χ be an s-dimensional random vector with logarithmic concave probability distribution. Then the joint chance-constraint

$$\mathbb{P}\{g_i(x,\chi) \ge 0, i = 1, \dots, r\} \ge p \tag{2}$$

└─ Main Results by Prékopa

Corollary (Prékopa '72)

Let $g_i(x, y)$ (i = 1, ..., m) be concave functions on $\mathbb{R}^n \times \mathbb{R}^s$ (where x is an n-dimensional and y an s-dimensional vector). Let further χ be an s-dimensional random vector with logarithmic concave probability distribution. Then the joint chance-constraint

$$\mathbb{P}\{g_i(x,\chi) \ge 0, i = 1, \dots, r\} \ge p \tag{2}$$

└─ Main Results by Prékopa

Corollary (Prékopa '72)

Let $g_i(x, y)$ (i = 1, ..., m) be concave functions on $\mathbb{R}^n \times \mathbb{R}^s$ (where x is an n-dimensional and y an s-dimensional vector). Let further χ be an s-dimensional random vector with logarithmic concave probability distribution. Then the joint chance-constraint

$$\mathbb{P}\{g_i(x,\chi) \ge 0, i = 1, \dots, r\} \ge p \tag{2}$$

Main Results by Prékopa

Corollary (Prékopa '72)

Let $g_i(x, y)$ (i = 1, ..., m) be concave functions on $\mathbb{R}^n \times \mathbb{R}^s$ (where x is an n-dimensional and y an s-dimensional vector). Let further χ be an s-dimensional random vector with logarithmic concave probability distribution. Then the joint chance-constraint

$$\mathbb{P}\{g_i(x,\chi) \ge 0, i = 1, \dots, r\} \ge p \tag{2}$$

Outline

1 Randomness occurs in the constraint function

2 Convexity of Chance-Constraints

- Definitions
- Main Results by Prékopa
- Generalized Results
- 3 Simple Recourse problems
- 4 Deterministic Reformulations (Special cases)

5 Useful Theorems

Generalized Results

Definition (Quasi-Concave Function)

Definition (Quasi-Concave Function)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **quasi-concave** if for all $x, y \in dom(f)$ and all $t \in [0, 1]$ it is

 $f(tx + (1-t)y) \geq \min(f(x), f(y))$

Definition (Quasi-Concave Function)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **quasi-concave** if for all $x, y \in dom(f)$ and all $t \in [0, 1]$ it is

$$f(tx + (1-t)y) \geq \min(f(x), f(y))$$

Generalization by Tamm ('76/'77)

Prékopa's results stay valid if the g_i 's are only quasi-concave!

Corollary (Prékopa '72)

Let $g_i(x, y)$ (i = 1, ..., m) be concave functions on $\mathbb{R}^n \times \mathbb{R}^s$ (where x is an n-dimensional and y an s-dimensional vector). Let further χ be an s-dimensional random vector with logarithmic concave probability distribution. Then the joint chance-constraint

$$\mathbb{P}\{g_i(x,\chi) \ge 0, i = 1, \dots, r\} \ge p \tag{2}$$

Corollary (Tamm '77)

Let $g_i(x, y)$ (i = 1, ..., m) be quasi-concave functions on $\mathbb{R}^n \times \mathbb{R}^s$ (where x is an n-dimensional and y an s-dimensional vector). Let further χ be an s-dimensional random vector with logarithmic concave probability distribution. Then the joint chance-constraint

$$\mathbb{P}\{g_i(x,\chi) \ge 0, i = 1, \dots, r\} \ge p \tag{2}$$

Generalized Results

Generalized Results

Examples of log-concave probability distributions

Uniform distribution

Generalized Results

- Uniform distribution
- Normal distributions

Generalized Results

- Uniform distribution
- Normal distributions
- Exponential distribution

Generalized Results

- Uniform distribution
- Normal distributions
- Exponential distribution
- Laplace distribution

Generalized Results

Examples of log-concave probability distributions

- Uniform distribution
- Normal distributions
- Exponential distribution
- Laplace distribution

...

Outline

1 Randomness occurs in the constraint function

2 Convexity of Chance-Constraints

- Definitions
- Main Results by Prékopa
- Generalized Results

3 Simple Recourse problems

4 Deterministic Reformulations (Special cases)

5 Useful Theorems

Allow violation

- Allow violation
- Restrict average "amount of violation"

- Allow violation
- Restrict average "amount of violation"
- Introduce penalty per "violation unit"

- Allow violation
- Restrict average "amount of violation"
- Introduce penalty per "violation unit"
- Find good trade-off: cost \leftrightarrow penalty

Simple-Recourse problem

 $\min_{x\in X} f(x)$

Simple-Recourse problem

$$\min_{x \in X} \quad f(x) + \sum_{i=1}^{m} d_i \cdot \mathbb{E}\left[[g_i(x, \chi)]^+ \right]$$

$$\bullet d_i > 0 \ \forall i \in \{1, \ldots, m\}$$

Simple-Recourse problem

$$\min_{x \in X} \quad f(x) + \sum_{i=1}^{m} d_i \cdot \mathbb{E}\left[[g_i(x, \chi)]^+ \right]$$

■
$$d_i > 0 \ \forall i \in \{1, ..., m\}$$

■ $[x]^+ = max(0, x)$

Why not choosing an expectation-constrained model?

Why not choosing an expectation-constrained model?

Expectation-Constrained Optimization Problem

$$\min_{x \in X} f(x)$$

s.t. $\mathbb{E}\left[[g_i(x, \chi)]^+\right] \le \delta_i \quad \forall i = 1, \dots, m$

Why not choosing an expectation-constrained model?

Expectation-Constrained Optimization Problem

$$\min_{x \in X} f(x)$$
s.t. $\mathbb{E}\left[[g_i(x,\chi)]^+\right] \le \delta_i \quad \forall i = 1, \dots, m$

Answer

Why not choosing an expectation-constrained model?

Expectation-Constrained Optimization Problem

$$\min_{x \in X} f(x)$$
s.t. $\mathbb{E}\left[[g_i(x,\chi)]^+\right] \le \delta_i \quad \forall i = 1, \dots, m$

Answer

Why not choosing an expectation-constrained model?

Expectation-Constrained Optimization Problem

$$\min_{x \in X} f(x)$$
s.t. $\mathbb{E}\left[[g_i(x,\chi)]^+\right] \le \delta_i \quad \forall i = 1, \dots, m$

Answer

■ No difference between "small" and "big" average violation.

Why not choosing an expectation-constrained model?

Expectation-Constrained Optimization Problem

$$\min_{x \in X} f(x)$$
s.t. $\mathbb{E}\left[[g_i(x, \chi)]^+\right] \le \delta_i \quad \forall i = 1, \dots, m$

Answer

- No difference between "small" and "big" average violation.
- Single objective.
Question

Why not choosing an expectation-constrained model?

Expectation-Constrained Optimization Problem

$$\min_{x \in X} f(x)$$
s.t. $\mathbb{E}\left[[g_i(x, \chi)]^+\right] \le \delta_i \quad \forall i = 1, \dots, m$

Answer

- No difference between "small" and "big" average violation.
- Single objective.
- No "flexibility".

Linköping University

Costs in case of violation taken into account

- Costs in case of violation taken into account
- "Magnitude" of violation can be controlled

- Costs in case of violation taken into account
- "Magnitude" of violation can be controlled

- Costs in case of violation taken into account
- "Magnitude" of violation can be controlled

Disadvantages:

- Costs in case of violation taken into account
- "Magnitude" of violation can be controlled

Disadvantages:

Probability of violation not restricted

- Costs in case of violation taken into account
- "Magnitude" of violation can be controlled

Disadvantages:

- Probability of violation not restricted
- Computation of $\mathbb{E}\left[\left[g_i(x,\chi)\right]^+\right]$ in gen. difficult

Outline

1 Randomness occurs in the constraint function

- 2 Convexity of Chance-Constraints
 - Definitions
 - Main Results by Prékopa
 - Generalized Results
- 3 Simple Recourse problems
- 4 Deterministic Reformulations (Special cases)

5 Useful Theorems

Simple-Recourse Problem

Simple-Recourse Problem

$$\min_{\mathbf{x}\in X} \quad f(\mathbf{x}) + \sum_{i=1}^m d_i \cdot \mathbb{E}\left[\left[g_i(\mathbf{x},\chi)
ight]^+
ight]$$

Simple-Recourse Problem

$$\min_{\substack{\in X}} \quad f(x) + \sum_{i=1}^m d_i \cdot \mathbb{E}\left[\left[g_i(x,\chi)\right]^+\right]$$

$$\chi^1, \ldots, \chi^K \in \mathbb{R}^s$$
: scenarios

n x

Simple-Recourse Problem

$$\min_{i \in X} \quad f(x) + \sum_{i=1}^{m} d_i \cdot \mathbb{E}\left[\left[g_i(x, \chi)\right]^+\right]$$

$$\chi^1, \dots, \chi^{\kappa} \in \mathbb{R}^s$$
: scenarios
 $\mathbb{P}\{\chi = \chi^k\} := p^k$: probabilities

Simple-Recourse Problem

$$\min_{i \in X} \quad f(x) + \sum_{i=1}^m d_i \cdot \mathbb{E}\left[\left[g_i(x, \chi)\right]^+\right]$$

 $\begin{array}{l} \chi^1,\ldots,\chi^{\sf K}\in\mathbb{R}^s: \text{ scenarios}\\ \mathbb{P}\{\chi=\chi^k\}:={\it p}^k: \text{ probabilities} \end{array}$

Reformulate Problem Deterministically

Linköping University

Simple-Recourse Problem

$$\min_{i \in X} \quad f(x) + \sum_{i=1}^{m} d_i \cdot \mathbb{E}\left[\left[g_i(x, \chi)\right]^+\right]$$

$$\begin{split} \chi^1,\ldots,\chi^{\sf K}\in\mathbb{R}^s: \text{ scenarios }\\ \mathbb{P}\{\chi=\chi^k\}:=\pmb{p}^k: \text{ probabilities } \end{split}$$

Reformulate Problem Deterministically

$$\min_{x\in X} \quad f(x) + \sum_{i=1}^m d_i \cdot \sum_{k=1}^{\kappa} [g_i(x,\chi^k)]^+$$

NGS UNN

Linköping University

$$\min_{x\in X} \quad f(x) + \sum_{i=1}^m d_i \cdot \sum_{k=1}^K [g_i(x,\chi^k)]^+$$

Deterministically reformulated problem

$$\min_{x\in X} f(x) + \sum_{i=1}^m d_i \cdot \sum_{k=1}^K [g_i(x,\chi^k)]^+$$

Deterministically reformulated problem

$$\min_{x\in X} f(x) + \sum_{i=1}^m d_i \cdot \sum_{k=1}^K [g_i(x,\chi^k)]^+$$

Good news

• $f(\cdot), g_i(\cdot, \hat{\chi}) \text{ convex } (\forall \hat{\chi}, \forall i \in \{1, \dots, n\})$

Deterministically reformulated problem

$$\min_{x\in X} f(x) + \sum_{i=1}^m d_i \cdot \sum_{k=1}^K [g_i(x,\chi^k)]^+$$

Good news

• $f(\cdot), g_i(\cdot, \hat{\chi}) \text{ convex } (\forall \hat{\chi}, \forall i \in \{1, \dots, n\})$

Deterministically reformulated problem

$$\min_{x\in X} f(x) + \sum_{i=1}^m d_i \cdot \sum_{k=1}^K [g_i(x,\chi^k)]^+$$

Good news

■ $f(\cdot), g_i(\cdot, \hat{\chi})$ convex $(\forall \hat{\chi}, \forall i \in \{1, ..., n\})$ \implies Objective function convex

Deterministically reformulated problem

$$\min_{x\in X} f(x) + \sum_{i=1}^m d_i \cdot \sum_{k=1}^K [g_i(x,\chi^k)]^+$$

- $f(\cdot), g_i(\cdot, \hat{\chi})$ convex $(\forall \hat{\chi}, \forall i \in \{1, ..., n\})$ \implies Objective function convex
- $f(\hat{\chi}), g_i(\cdot, \hat{\chi})$ linear $(\forall \hat{\chi}, \forall i \in \{1, \dots, n\})$

Deterministically reformulated problem

$$\min_{x\in X} f(x) + \sum_{i=1}^m d_i \cdot \sum_{k=1}^K [g_i(x,\chi^k)]^+$$

- $f(\cdot), g_i(\cdot, \hat{\chi})$ convex $(\forall \hat{\chi}, \forall i \in \{1, ..., n\})$ \implies Objective function convex
- $f(\hat{\chi}), g_i(\cdot, \hat{\chi})$ linear $(\forall \hat{\chi}, \forall i \in \{1, \dots, n\})$

Deterministically reformulated problem

$$\min_{x\in X} f(x) + \sum_{i=1}^m d_i \cdot \sum_{k=1}^K [g_i(x,\chi^k)]^+$$

- $f(\cdot), g_i(\cdot, \hat{\chi})$ convex $(\forall \hat{\chi}, \forall i \in \{1, ..., n\})$ \implies Objective function convex
- $f(\hat{\chi}), g_i(\cdot, \hat{\chi})$ linear $(\forall \hat{\chi}, \forall i \in \{1, ..., n\})$ ⇒ Objective function piecewise linear

Deterministically reformulated problem

$$\min_{x\in X} f(x) + \sum_{i=1}^m d_i \cdot \sum_{k=1}^K [g_i(x,\chi^k)]^+$$

Good news

- $f(\cdot), g_i(\cdot, \hat{\chi})$ convex $(\forall \hat{\chi}, \forall i \in \{1, ..., n\})$ \implies Objective function convex
- $f(\hat{\chi}), g_i(\cdot, \hat{\chi})$ linear $(\forall \hat{\chi}, \forall i \in \{1, ..., n\})$ \implies Objective function piecewise linear

Problems

ersity

THU - C

Deterministically reformulated problem

$$\min_{x\in X} \quad f(x) + \sum_{i=1}^m d_i \cdot \sum_{k=1}^K [g_i(x,\chi^k)]^+$$

- $f(\cdot), g_i(\cdot, \hat{\chi})$ convex $(\forall \hat{\chi}, \forall i \in \{1, ..., n\})$ \implies Objective function convex
- $f(\hat{\chi}), g_i(\cdot, \hat{\chi})$ linear $(\forall \hat{\chi}, \forall i \in \{1, ..., n\})$ \implies Objective function piecewise linear

• ?	itere and the second
7	

Stochastic Optimization

g_i linear / Normal Distribution / Independence

Simple-Recourse Problem

g_i linear / Normal Distribution / Independence

Simple-Recourse Problem

$$\min_{x \in X} \quad f(x) + \sum_{i=1}^{m} d_i \cdot \mathbb{E}\left[[a^i(\chi)x - b_i]^+ \right]$$

g_i linear / Normal Distribution / Independence

Simple-Recourse Problem

$$\min_{x \in X} f(x) + \sum_{i=1}^{m} d_i \cdot \mathbb{E}\left[\left[a^i(\chi)x - b_i\right]^+\right]$$

 $a^i(\chi) \in \mathbb{R}^n$: random vector with ind. normally distr. entries

g_i linear / Normal Distribution / Independence

Simple-Recourse Problem

$$\min_{x \in X} f(x) + \sum_{i=1}^{m} d_i \cdot \mathbb{E}\left[[a^i(\chi)x - b_i]^+ \right]$$

 $a^i(\chi)\in\mathbb{R}^n$: random vector with ind. normally distr. entries $a^i_j(\chi)\sim\mathcal{N}(\mu^i_j,\sigma^i_j)$

gi linear / Normal Distribution / Independence II

- φ : Density function of standard normal distribution
- Φ : Cumulative distribution function of standard normal distribution

gi linear / Normal Distribution / Independence II

- φ : Density function of standard normal distribution
- Φ : Cumulative distribution function of standard normal distribution

$$\begin{array}{l} \mu'_{x} := \sum_{j=1} \mu'_{j} x_{j} \\ \sigma^{i}_{x} := \sqrt{\sum_{j=1}^{n} (\sigma^{i}_{j})^{2} x_{j}^{2}} \end{array}$$

g_i linear / Normal Distribution / Independence II

 φ : Density function of standard normal distribution Φ : Cumulative distribution function of standard normal distribution $\mu_{x}^{i} := \sum_{i=1}^{n} \mu_{i}^{i} x_{i}$

$$\sigma_x^i := \sqrt{\sum_{j=1}^n (\sigma_j^i)^2 x_j^2}$$

g_i linear / Normal Distribution / Independence II

 $\begin{array}{l} \varphi \text{: Density function of standard normal distribution} \\ \Phi \text{: Cumulative distribution function of standard normal distribution} \\ \mu^i_x := \sum_{j=1}^n \mu^i_j x_j \\ \sigma^i_x := \sqrt{\sum_{j=1}^n (\sigma^i_j)^2 x_j^2} \end{array}$

$$\min_{x \in X} f(x) + \sum_{i=1}^{m} d_i \cdot \left[\sigma_x^i \cdot \varphi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) - (b_i - \mu_x^i) \cdot \left[1 - \Phi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) \right] \right]$$

gi linear / Normal Distribution / Independence III

$$\min_{x \in X} f(x) + \sum_{i=1}^{m} d_i \cdot \left[\sigma_x^i \cdot \varphi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) - (b_i - \mu_x^i) \cdot \left[1 - \Phi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right)\right] \right]$$

gi linear / Normal Distribution / Independence III

Deterministically reformulated problem

$$\min_{x \in X} f(x) + \sum_{i=1}^{m} d_i \cdot \left[\sigma_x^i \cdot \varphi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) - (b_i - \mu_x^i) \cdot \left[1 - \Phi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) \right] \right]$$

g_i linear / Normal Distribution / Independence III

Deterministically reformulated problem

$$\min_{x \in X} f(x) + \sum_{i=1}^{m} d_i \cdot \left[\sigma_x^i \cdot \varphi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) - (b_i - \mu_x^i) \cdot \left[1 - \Phi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) \right] \right]$$

Good news

Objective function evaluation easy.

Deterministically reformulated problem

$$\min_{x \in X} f(x) + \sum_{i=1}^{m} d_i \cdot \left[\sigma_x^i \cdot \varphi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) - (b_i - \mu_x^i) \cdot \left[1 - \Phi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) \right] \right]$$

Good news

- Objective function evaluation easy.
- f convex \implies Objective function convex.

Deterministically reformulated problem

$$\min_{x \in X} f(x) + \sum_{i=1}^{m} d_i \cdot \left[\sigma_x^i \cdot \varphi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) - (b_i - \mu_x^i) \cdot \left[1 - \Phi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) \right] \right]$$

Good news

- Objective function evaluation easy.
- f convex \implies Objective function convex.
- Objective function differentiable.

Deterministically reformulated problem

$$\min_{x \in X} f(x) + \sum_{i=1}^{m} d_i \cdot \left[\sigma_x^i \cdot \varphi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) - (b_i - \mu_x^i) \cdot \left[1 - \Phi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) \right] \right]$$

Good news

- Objective function evaluation easy.
- f convex \implies Objective function convex.
- Objective function differentiable.

Deterministically reformulated problem

$$\min_{x \in X} f(x) + \sum_{i=1}^{m} d_i \cdot \left[\sigma_x^i \cdot \varphi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) - (b_i - \mu_x^i) \cdot \left[1 - \Phi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) \right] \right]$$

Good news

- Objective function evaluation easy.
- f convex \implies Objective function convex.
- Objective function differentiable.

Problems

Deterministically reformulated problem

$$\min_{x \in X} f(x) + \sum_{i=1}^{m} d_i \cdot \left[\sigma_x^i \cdot \varphi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) - (b_i - \mu_x^i) \cdot \left[1 - \Phi\left(\frac{b_i - \mu_x^i}{\sigma_x^i}\right) \right] \right]$$

Good news

- Objective function evaluation easy.
- f convex \implies Objective function convex.
- Objective function differentiable.

Problems

No analytic description.

Simple-Recourse Problem

Simple-Recourse Problem

$$\min_{x \in X} \quad f(x) + d \cdot \mathbb{E}\left[[\chi^T x - b]^+ \right]$$

Simple-Recourse Problem

$$\min_{x \in X} f(x) + d \cdot \mathbb{E}\left[[\chi^T x - b]^+ \right]$$

 $\boldsymbol{\chi} \in \mathbb{R}^n\!\!:$ random vector with independent Poisson distr. entries

Simple-Recourse Problem

$$\min_{x \in X} f(x) + d \cdot \mathbb{E}\left[[\chi^T x - b]^+ \right]$$

 $\chi \in \mathbb{R}^n$: random vector with independent Poisson distr. entries μ : Vector of means of χ

Simple-Recourse Problem

$$\min_{x \in X} f(x) + d \cdot \mathbb{E}\left[[\chi^T x - b]^+ \right]$$

 $\chi \in \mathbb{R}^n$: random vector with independent Poisson distr. entries μ : Vector of means of χ

 $\chi^T x$: Poisson with mean $\hat{\mu} = \mu^T x$

Simple-Recourse Problem

$$\min_{x \in X} f(x) + d \cdot \mathbb{E}\left[[\chi^T x - b]^+ \right]$$

 $\chi \in \mathbb{R}^n$: random vector with independent Poisson distr. entries μ : Vector of means of χ

 $\chi^T x$: Poisson with mean $\hat{\mu} = \mu^T x$

Deterministically reformulated problem

Simple-Recourse Problem

$$\min_{x \in X} f(x) + d \cdot \mathbb{E}\left[[\chi^T x - b]^+ \right]$$

 $\chi \in \mathbb{R}^n$: random vector with independent Poisson distr. entries μ : Vector of means of χ

 $\chi^T x$: Poisson with mean $\hat{\mu} = \mu^T x$

Deterministically reformulated problem

$$\min_{x \in X} f(x) + d \cdot \sum_{k=1}^{\infty} \frac{e^{-\hat{\mu}} \hat{\mu}^k}{k!} [k-b]^+$$

s.t. $\hat{\mu} = \mu^T x$

Simple-Recourse Problem

$$\min_{x \in X} f(x) + d \cdot \mathbb{E}\left[[\chi^T x - b]^+ \right]$$

 $\chi \in \mathbb{R}^n$: random vector with independent Poisson distr. entries μ : Vector of means of χ

 $\chi^T x$: Poisson with mean $\hat{\mu} = \mu^T x$

Deterministically reformulated problem

$$\min_{x \in X} f(x) + d \cdot \sum_{k=b+1}^{\infty} \frac{e^{-\hat{\mu}} \hat{\mu}^k}{k!} (k-b)$$

s.t. $\hat{\mu} = \mu^T x$

Outline

1 Randomness occurs in the constraint function

- 2 Convexity of Chance-Constraints
 - Definitions
 - Main Results by Prékopa
 - Generalized Results
- 3 Simple Recourse problems
- 4 Deterministic Reformulations (Special cases)

5 Useful Theorems

Theorem Let • $\gamma(x) := \mathbb{E}\left[[g(x, \chi)]^+\right]$

Theorem
Let
• $\gamma(x) := \mathbb{E}\left[[g(x, \chi)]^+ \right]$
• $\mathbb{E}[g(x,\chi)] < \infty \ \forall x \in \mathbb{R}^n$

Theorem
Let
• $\gamma(x) := \mathbb{E}\left[[g(x, \chi)]^+ \right]$
• $\mathbb{E}[g(x,\chi)] < \infty \ \forall x \in \mathbb{R}^n$

Let

$$\gamma(x) := \mathbb{E}\left[\left[g(x, \chi) \right]^+ \right]$$

$$\mathbb{E}\left[g(x,\chi)\right] < \infty \ \forall x \in \mathbb{R}^{d}$$

$$g(\cdot, \hat{\chi})$$
 is convex $\forall \hat{\chi} \implies \gamma$ is convex

Let

•
$$\gamma(x) := \mathbb{E}\left[\left[a(\chi)x - b\right]^+\right]$$

Let

•
$$\gamma(x) := \mathbb{E}\left[\left[a(\chi)x - b\right]^+\right]$$

• Φ : cumulative distribution function of of $a(\chi)x - b$

Let

•
$$\gamma(x) := \mathbb{E}\left[\left[a(\chi)x - b\right]^+\right]$$

• Φ : cumulative distribution function of of $a(\chi)x - b$

•
$$\mathbb{E}[a(\chi)x - b] < \infty \ \forall x \in \mathbb{R}^{r}$$

Let

•
$$\gamma(x) := \mathbb{E}\left[\left[a(\chi)x - b\right]^+\right]$$

• Φ : cumulative distribution function of of $a(\chi)x - b$

•
$$\mathbb{E}[a(\chi)x - b] < \infty \ \forall x \in \mathbb{R}^{r}$$

Let

•
$$\gamma(x) := \mathbb{E}\left[\left[a(\chi)x - b\right]^+\right]$$

• Φ : cumulative distribution function of of $a(\chi)x - b$

•
$$\mathbb{E}\left[a(\chi)x-b\right] < \infty \ \forall x \in \mathbb{R}^n$$

Let

$$\gamma(\mathbf{x}) := \mathbb{E}\left[[\mathbf{a}(\chi)\mathbf{x} - \mathbf{b}]^+ \right]$$

• Φ : cumulative distribution function of of $a(\chi)x - b$

•
$$\mathbb{E}\left[a(\chi)x-b\right] < \infty \ \forall x \in \mathbb{R}^n$$

Then the following holds:

1 γ is convex

Let

$$\gamma(\mathbf{x}) := \mathbb{E}\left[[\mathbf{a}(\chi)\mathbf{x} - \mathbf{b}]^+ \right]$$

• Φ : cumulative distribution function of of $a(\chi)x - b$

•
$$\mathbb{E}\left[a(\chi)x-b\right] < \infty \ \forall x \in \mathbb{R}^n$$

- **1** γ is convex
- **2** For all $x \in \mathbb{R}^n \gamma(x) < \infty$.

Let

$$\gamma(\mathbf{x}) := \mathbb{E}\left[[\mathbf{a}(\chi)\mathbf{x} - \mathbf{b}]^+ \right]$$

• Φ : cumulative distribution function of of $a(\chi)x - b$

•
$$\mathbb{E}\left[a(\chi)x-b\right] < \infty \ \forall x \in \mathbb{R}^n$$

- **1** γ is convex
- **2** For all $x \in \mathbb{R}^n \gamma(x) < \infty$.
- $\mathbf{3} \gamma$ is Lipschitz continuous.

Let

- $\gamma(x) := \mathbb{E}\left[\left[a(\chi)x b\right]^+\right]$
- Φ : cumulative distribution function of of $a(\chi)x b$
- $\mathbb{E}[a(\chi)x b] < \infty \ \forall x \in \mathbb{R}^n$

- **1** γ is convex
- **2** For all $x \in \mathbb{R}^n \gamma(x) < \infty$.
- $\mathbf{3} \gamma$ is Lipschitz continuous.
- **4** γ is differentiable wherever Φ is continuous.

Let

$$\gamma(\mathbf{x}) := \mathbb{E}\left[[\mathbf{a}(\chi)\mathbf{x} - \mathbf{b}]^+ \right]$$

• Φ : cumulative distribution function of of $a(\chi)x - b$

•
$$\mathbb{E}\left[a(\chi)x-b\right] < \infty \ \forall x \in \mathbb{R}^n$$

- **1** γ is convex
- **2** For all $x \in \mathbb{R}^n \gamma(x) < \infty$.
- $\mathbf{3} \gamma$ is Lipschitz continuous.
- **4** γ is differentiable wherever Φ is continuous.
- **5** $a(\chi)x b$ discretely distributed $\Rightarrow \gamma$ is piecewise linear.

QUESTIONS?

What about next week?

