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Stochastic Optimization

Randomness occurs in the constraint function

Deterministic Opt. Model → Stochastic Programming Model

max
x∈X

f (x)

s.t. g(x) ≤ 0

→

min
x∈X

f (x)

s.t. g(x , χ) ≤ 0

χ ∈ Ω ⊆ Rs : random vector

G : Rn ×Rs → Rm

G (x , χ) = (g1(x , χ), . . . , gm(x , χ))
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Stochastic Optimization

Randomness occurs in the constraint function

Question

What means ”feasible solution” in case of uncertain parameters in the
constraint function(s)?

Feasible in all possible cases / scenarios

Feasible with high probability

Average violation not too bad / Penalty not too high

Feasible after correction has been made
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Stochastic Optimization

Chance-Constrained Stochastic Optimization Problems

Chance-Constrained Stochastic Optimization Problem

min
x∈X

f (x)

s.t. P{G (x , χ) ≤ 0} ≥ p
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Stochastic Optimization

Chance-Constrained Stochastic Optimization Problems

Lower bound for probability of feasibility

Stochastic Optimization Problem with Joint Chance-Constraint

min
x∈X

f (x)

s.t. P{gi (x , χ) ≤ 0 ∀ i ∈ {1, . . . ,m}} ≥ p

Stochastic Optimization Problem with Separate Chance-Constraints

min
x∈X

f (x)

s.t. P{gi (x , χ) ≤ 0} ≥ p ∀ i ∈ {1, . . . ,m}
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Stochastic Optimization

Chance-Constrained Stochastic Optimization Problems

Reformulation Joint Chance Constraint

Stochastic Optimization Problem with Joint Chance-Constraint

g(x , χ) = maxi∈{1,...,m}gi (x , χ)
g : Rn ×Rs → R

min
x∈X

f (x)

s.t. P{gi (x , χ) ≤ 0 ∀ i ∈ {1, . . . ,m}} ≥ p
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Chance-Constrained Stochastic Optimization Problems
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Chance-Constrained Stochastic Optimization Problems

Upper bound for risk of violation

Stochastic Optimization Problem with Joint Chance-Constraint

min
x∈X

f (x)

s.t. P{∃i ∈ {1, . . . ,m} : gi (x , χ) > 0} ≤ 1− p

Stochastic Optimization Problem with Separate Chance-Constraints

min
x∈X

f (x)

s.t. P{gi (x , χ) > 0} ≤ 1− p ∀ i ∈ {1, . . . ,m}
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Stochastic Optimization

Chance-Constrained Stochastic Optimization Problems

Chance-Constraint → Expectation-Constraint

Expectation-Constrained Stochastic Optimization Problem

min
x∈X

f (x)

s.t. E [G (x , χ)] ≤ 0

Stefanie Kosuch Stochastic Optimization 12/34



Stochastic Optimization

Chance-Constrained Stochastic Optimization Problems

Chance-Constraint → Expectation-Constraint

Expectation-Constrained Stochastic Optimization Problem

min
x∈X

f (x)

s.t. E [G (x , χ)] ≤ 0

Stefanie Kosuch Stochastic Optimization 12/34



Stochastic Optimization

Chance-Constrained Stochastic Optimization Problems

Chance-Constraint → Expectation-Constraint II

Reformulation

1I : R→ {0, 1}: Indicator function for interval I
g : Rn ×Rs → R

P{g(x , χ) ≤ 0} = E
[
1(−∞,0][ g(x , χ) ]

]
Stochastic Optimization Problem with Chance-Constraint

min
x∈X

f (x)

s.t. P{g(x , χ) ≤ 0} ≥ p
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Generalized Results

Stefanie Kosuch Stochastic Optimization 14/34



Stochastic Optimization

Deterministic Reformulations (Special cases)

Discrete Finite Distribution

Chance-Constrained Stochastic Optimization Problem

min
x∈X

f (x)

s.t. P{G(x, χ) ≤ 0} ≥ p

χ1, . . . , χK ∈ Rs : scenarios
P{χ = χk} := pk : probabilities

Reformulate Problem Deterministically

Basic idea:

”Choose” scenarios where constraints are satisfied

Probability that one of these arises at least p

Realization:

Introduce one binary decision variable zk per scenario

zk = 1:G(x , χk) ≤ 0
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Deterministic Reformulations (Special cases)

Discrete Finite Distribution III

Deterministically reformulated problem

min f (x)

s.t. gi (x , χk) ≤ 0 + M(1− zk) ∀i = 1, . . . ,m ,∀k = 1, . . . ,K

K∑
k=1

pkzk ≥ p

x ∈ X , zk ∈ {0, 1} ∀k = 1, . . . ,K

M: some ”big” constant

Problems

Numerical instability due to big M possible

K ·m + 1 constraints

K additional binary decision variables
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Stochastic Optimization

Deterministic Reformulations (Special cases)

G linear / Normal Distribution

Chance-Constrained Stochastic Programming Problem

min
x∈X

f (x)

s.t. P{χT x ≤ b} ≥ p

χ ∈ Rn: random vector with normally distr. entries
χ ∼ N (µ,Σ)
Σ: Covariance Matrix of χ

Deterministically reformulated problem

min
x∈X

f (x)

s.t.

Φ

(
b − µT x√

xTΣx

)
≥ p

Φ: Cumulative distribution function of standard normal distribution
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Stochastic Optimization

Deterministic Reformulations (Special cases)

G linear / Normal Distribution / Independence

Deterministically reformulated problem

min
x∈X

f (x)

s.t. Φ−1(p) ·
√

xTΣx ≤ −µT x + b

Second-Order Cone constraint

δ := Φ−1(p) > 0 ⇔ p > 0.5

min
x∈X

f (x)

s.t. ‖xTΣ
1
2 ‖ ≤ −1

δ
µT x +

b

δ
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min
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f (x)
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δ

Properties

X = Rn

⇒ Feasible set is convex

X = Rn & f convex

⇒ Convex deterministic optimization problem

If X = Rn & f linear

⇒ Second-Order Cone Problem
Solvable in polynomial time using Interior point method
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Stochastic Optimization

Deterministic Reformulations (Special cases)

G linear / Poisson Distribution / Independence

Chance-Constrained Stochastic Programming Problem

min
x∈X

f (x)

s.t. P{χT x ≤ b} ≥ p

χ ∈ Rn: random vector with independent Poisson distr. entries
µ: Vector of means

Idea

Find λ s.t. for X ∼ Pois(λ): P{X ≤ b} = p

Solve:

min
x∈X

f (x)

s.t. µT x ≤ λ
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Definition (Concave Function)

A function f : Rn → R is called concave if for all x , y ∈ dom(f ) and all
t ∈ [0, 1] it is

f (tx + (1− t)y) ≥ tf (x) + (1− t)f (y)

Definition (Log-Concave Function)

A function f : Rn → R is called logarithmic concave (log-concave) if
log(f ) is a concave function.

Property

A function f : Rn → R is log-concave iff for all x , y ∈ dom(f ) and all
θ ∈ [0, 1] it is

f (θx + (1− θ)y) ≥ f (x)θf (y)(1−θ)
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Generalized Results

Stefanie Kosuch Stochastic Optimization 27/34



Stochastic Optimization

Convexity of Chance Constraints

Main Results by Prékopa

Theorem (Prékopa ’72)

Let gi (x , y) (i = 1, . . . ,m) be concave functions on Rn ×Rs (where x
is an n-dimensional and y an s-dimensional vector). Let further χ be an
s-dimensional random vector with logarithmic concave probability
distribution. Then, the left hand side x-function of the joint
chance-constraint

P{gi (x , χ) ≥ 0, i = 1, . . . , r} ≥ p (1)

is logarithmic concave in the entire space Rn.
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Theorem (Prékopa ’72)
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Generalized Results

Stefanie Kosuch Stochastic Optimization 30/34



Stochastic Optimization

Convexity of Chance Constraints

Generalized Results

Definition (Quasi-Concave Function)

A function f : Rn → R is called quasi-concave if for all x , y ∈ dom(f )
and all t ∈ [0, 1] it is

f (tx + (1− t)y) ≥ min(f (x), f (y))

Generalization by Tamm (’76/’77)

Prékopa’s results stay valid if the gi ’s are only quasi-concave!
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Let gi (x , y) (i = 1, . . . ,m) be quasi-concave functions on Rn ×Rs

(where x is an n-dimensional and y an s-dimensional vector). Let further
χ be an s-dimensional random vector with logarithmic concave
probability distribution. Then the joint chance-constraint

P{gi (x , χ) ≥ 0, i = 1, . . . , r} ≥ p (2)

defines a convex set.

Stefanie Kosuch Stochastic Optimization 32/34



Stochastic Optimization

Convexity of Chance Constraints

Generalized Results

Examples of log-concave probability distributions

Uniform distribution

Normal distributions

Exponential distribution

Laplace distribution

...

Stefanie Kosuch Stochastic Optimization 33/34



Stochastic Optimization

Convexity of Chance Constraints

Generalized Results

Examples of log-concave probability distributions

Uniform distribution

Normal distributions

Exponential distribution

Laplace distribution

...

Stefanie Kosuch Stochastic Optimization 33/34



Stochastic Optimization

Convexity of Chance Constraints

Generalized Results

Examples of log-concave probability distributions

Uniform distribution

Normal distributions

Exponential distribution

Laplace distribution

...

Stefanie Kosuch Stochastic Optimization 33/34



Stochastic Optimization

Convexity of Chance Constraints

Generalized Results

Examples of log-concave probability distributions

Uniform distribution

Normal distributions

Exponential distribution

Laplace distribution

...

Stefanie Kosuch Stochastic Optimization 33/34



Stochastic Optimization

Convexity of Chance Constraints

Generalized Results

Examples of log-concave probability distributions

Uniform distribution

Normal distributions

Exponential distribution

Laplace distribution

...

Stefanie Kosuch Stochastic Optimization 33/34



Stochastic Optimization

Convexity of Chance Constraints

Generalized Results

Examples of log-concave probability distributions

Uniform distribution

Normal distributions

Exponential distribution

Laplace distribution

...

Stefanie Kosuch Stochastic Optimization 33/34



Stochastic Optimization

Convexity of Chance Constraints

Generalized Results

QUESTIONS?

What about next week in 2 weeks?

Stefanie Kosuch Stochastic Optimization 34/34


	Randomness occurs in the constraint function
	Chance-Constrained Stochastic Optimization Problems
	Deterministic Reformulations (Special cases)
	Convexity of Chance Constraints
	Definitions
	Main Results by Prékopa
	Generalized Results


