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Theorem (Prékopa '72)

Let gi(x,y) (i=1,...,m) be concave functions on R" x R® (where x
is an n-dimensional and y an s-dimensional vector). Let further x be an
s-dimensional random vector with logarithmic concave probability
distribution. Then, the left hand side x-function of the joint
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P{gi(x,x) > 0,i=1,....,r} > p (1)

is logarithmic concave in the entire space R".
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A function f : R" — R is called quasi-concave if for all x, y € dom(f)
and all t € [0,1] it is
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Generalization by Tamm ('76/'77)

Prékopa’s results stay valid if the g;'s are only quasi-concave!
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