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Stochastic Optimization

Randomness occurs in the objective function
m Expected value objective function
m Probability of shortfall
m Minimize Variance
m Value at risk

One more SP example
m Machine Scheduling

A bit of History
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Stochastic Optimization
l7Randornness occurs in the objective function

Deterministic Opt. Model — Stochastic Programming Model

min f(x) min f(x,x)
st. g(x)<0 N st g(xx)<0

X € © C R®: vector with random variable as entries
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Stochastic Optimization

l7Randon1ness occurs in the objective function

Expected value objective function

Minimize an expected value function

mi)rg E[f(x, x)]

S

st. g(x) <0

Examples

Expected cost / Expected gain
Expected machine working time
Expected transportation time

Expected customer waiting times

Expected damage on target

o
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Stochastic Optimization

l7Randon1ness occurs in the objective function

Expected value objective function

Advantages

m Good result "on average"

m Objective function can often be reformulated deterministically
m Convex objective if f(-, x) is convex (for all possible x)
]

Lower bound using Jensen's inequality:

Theorem (Jensen, 1906)

Let f be a convex function and X a random variable. Then

E[f(X)] > f(E[X])

Disadvantages

m We might encounter very "bad cases” ("Risk")

m Expectation can only be computed as multidimensional integral
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Stochastic Optimization
l7Randornness occurs in the objective function

Expected value objective function

Linear Programming Problem

Stochastic Programming Problem

: T
xne]i}g" E [C(X) X]
x>0

st. Ax<b

x € R®: random vector

Deterministically Reformulated Programming Problem

- T
min X
x€R" H

x>0

st. Ax<b

€ R (deterministic) vector of means

Do ersity
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Stochastic Optimization
l7Randornness occurs in the objective function

Expected value objective function

Discrete Finite Distribution

Stochastic Programming Problem

in E[f
min B [f(x, x)]
st. g(x)<0
X € R®: random vector
o
Deterministically Reformulated Programming Problem
K
q K K
min > p“f(xx")
k=1
st. g(x)<0
XL, XK € RS scenarios
P{x = x*} := p*: probabilities
Linkoping University
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Stochastic Optimization
L Randomness occurs in the objective function

Expected value objective function

General problem with discrete finite distributions

Exponential number of scenarios
Assume:

m Discretely distributed random variables
m Independently distributed random variables

m (Linear) Dependence: # dec. variables <> # rand. variables

—> Exponential number of scenarios

TR
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Stochastic Optimization
l7Randornness occurs in the objective function

Expected value objective function

General problem with discrete finite distributions

Exponential number of scenarios
Assume:

m Discretely distributed random variables

m Independently distributed random variables

m (Linear) Dependency: # dec. variables <+ # rand. variables

—> Exponential number of scenarios

Example
m n decision variables
m n random variables

m 2 possible outcomes for each random variable (e.g. Bernoulli
distribution)

Independent random variables = 2" scenarios

Lersity
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Stochastic Optimization
l7Randornness occurs in the objective function

Expected value objective function

Discrete Finite Distribution

Stochastic Programming Problem

in E[f
min B [f(x, x)]
st. g(x)<0
X € R®: random vector
o
Deterministically Reformulated Programming Problem
K
q K K
min > p“f(xx")
k=1
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Stochastic Optimization

l7Randornness occurs in the objective function

Probability of shortfall

Minimize probability of shortfall

mi)rg P{f(x,x)> T}

X€E
st. g(x)<0
Examples
m Investment strategies
m Project cost management (T = 0)
Probability of " Target” achievement
Linkdping University
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Stochastic Optimization

l7Randornness occurs in the objective function

Probability of shortfall

Advantages
m If probability of shortfall too high actions can be taken.

Disadvantages

m We might still encounter very "bad cases”

m No influence on average cost

N
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Stochastic Optimization
l7Randornness occurs in the objective function
Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem
min  P{f(x,x) > T}

st. g(x) <0
x € R®: random vector

XYoo x € R scenarios
P{x = x*} := p*: probabilities

Reformulate Problem Deterministically
Basic idea:

m " Choose” scenarios with shortfall

m Probability that one of these arises minimized
Realization:

m Introduce one binary decision variable z* per scenario

m z¥ = 1: shortfall in scenario k

Stefanie Kosuch Stochastic Optimization
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Stochastic Optimization
l7Randornness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution I

Reformulate Problem Deterministically

Basic idea:
m "Choose” scenarios with shortfall

m Probability that one of these arises minimized

Realization:
m Introduce one binary decision variable " per scenario

m zX = 1: shortfall in scenario k )

Deterministically reformulated problem

K
min Zpkzk
k=1
st. g(x) <0
fF,x) < T+ Mz5 Vk=1,...,K
xeX, z¢e{0,1} Vk=1,...,K

M: some " big” constant

irsity
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Stochastic Optimization
l7Randornness occurs in the objective function
Probability of shortfall

Discrete Finite Distribution Il

Deterministically reformulated problem

K
min Zpkzk
k=1
st. g(x) <0
f,x) < T+Mz" Vk=1,...,
xeX, z¢e{0,1} Vk=1,...,K

M: some " big” constant

X

Problems
m Numerical instability due to big M possible
K additional constraints

irsity

|
m K additional binary decision variables
(]

Deterministic reformulation hard
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Stochastic Optimization
l7Randornness occurs in the objective function
Probability of shortfall

f linear / Normal Distribution

Stochastic Programming Problem

in P{x"x>T
min P{x"x> T}

st. g(x)<0

X € R": random vector with normally distr. entries
X~ N(p,X)
> Covariance Matrix of x

Deterministically reformulated problem

T—u"x
max ————
xeX \/XTZX
st. g(x) <0

irsity
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L Randomness occurs in the objective function
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Stochastic Optimization

l7Randornness occurs in the objective function

Minimize Variance

Minimize variance ?
min  Var [f(x, x)]

xeX
st.  g(x) <0

Advantages:
m Outcome more concentrated around mean
m Possibility to reduce risk

Disadvantages:

m Makes not much sense without benchmark for expected costs

N
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Stochastic Optimization
l7Randornness occurs in the objective function

Minimize Variance

Simple Mean-Variance Models

Minimize convex combination of variance and expectation
min  AVar [f(x )] + (1 = NE[f(x,x)]  (A€(0,1))

st. g(x)<0

Minimize weighted product of variance and expectation
min  Var [£(x, )]+ B [f(x, X)
S

st. g(x)<0
Minimize variance with expectation threshold
in  Var[f
min - Var [f(x, x)]

st. g(x)<0
E[f(x,x)] < T
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Stochastic Optimization

l7Randornness occurs in the objective function

Minimize Variance

Problems when variance in objective
m Loss of linearity
m Loss of convexity
m Hardness of problem (e.g. quadratic objective)
[

Compute variance / Evaluate objective function

oK
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Stochastic Optimization
l7Randornness occurs in the objective function

Value at risk

Question

What is the probability that my total loss during a fixed time interval
does not exceed a certain limit?

Examples

m What is the probability that my stock portfolio will fall in value by
more than $ 100 million in one week?

m If | invest $ 1 million today, how much can | loose till tomorrow?

N
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Stochastic Optimization
l7Randon1ness occurs in the objective function

Value at risk

Definition (Value-at-Risk)

X: random variable describing the loss over time horizon T
®x: Cumulative distribution function of X

Value at risk over time horizon T at confidence level a:
VAR, (X) = inf{c|®x(c) > a}

Interpretation (Philippe Jorion)

"Value at Risk measures the worst expected loss over a given horizon
under normal market conditions at a given level of confidence.”

v

N
e
Linkdping University

Stefanie Kosuch Stochastic Optimization 26/40



Stochastic Optimization

l7Randon1ness occurs in the objective function

Value at risk

Value at Risk in Stochastic Programming
m Risk measure

m Objective: Minimize value at risk

Critics
m Lack of subadditivity
m Lack of convexity

m Difficult to compute from scenarios

Alternatives
m Conditional value at risk

m Tail value at risk

v
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Stochastic Optimization
l7One more SP example
LMachine Scheduling

Deterministic Problem

(Possible) Parameters
m # of (different) machines / parts
Processing times

# of jobs to be completed

[
[
m # of employees available
m Due dates

[

Precedence relations

(Possible) Objectives
m Minimize total completition time
m Maximize # of completed jobs

m Minimize maximum/sum of tardyness

m Minimize idle times wsity
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Stochastic Optimization
l7One more SP example
Machine Scheduling

Stochastic Problem

(Possible) Uncertain Parameters

# of (different) available machines < break downs
# of (different) parts +— costumization

Processing times <— manual operations

# of jobs to be completed < demand

# of employees available < sickness, vacations

Due dates < uncertainty in processing times
Precedence relations

N
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Stochastic Optimization
l7One more SP example
Machine Scheduling

Stochastic Problem

(Possible) Objective
B minimize expected... total processing time

m Given # of jobbs, maximize probability that... processing "in time”

Stochastic Settings
m Single stage decision
m Multi-Stage decision < Discretization of processing time

m Online Programming <~ New information arrives over time

x
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Stochastic Optimization
LA bit of History

The beginning

& George Dantzig
Linear programming under uncertainty. (1955)
Management Science 1:197-206

m Two-Stage and Simple recourse problems
m Finite number of scenarios
m Deterministic Reformualtion

m No use of special structure
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Stochastic Optimization
LA bit of History

[§ Richard Van Slyke and Roger J-B. Wets

L-shaped linear programs with applications to optimal control
and stochastic programming. (1969)
MSIAM Journal on Applied Mathematics 17(4):638-663, 1969

m Solution method that makes use of special problem structures
m Reduced computing time

BT
N
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Stochastic Optimization
LA bit of History

@ Andras Prékopa
On probabilistic constrained programming. (1970)
Proceedings of the Princeton Symposium on Mathematical
Programming 113-1383

@ Andras Prékopa
A class of stochastic programming decision problems. (1972)
Mathematische Operationsforschung und Statistik 3(5):349-354

m Main contributions to understanding of chance-constraint
programming

m Convex cases

m Joint constraints .
TR
~e
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Stochastic Optimization
LA bit of History

@ Maarten H. van der Vlerk

Stochastic Programming with Integer Recourse. (1995)
PhD thesis, University of Groningen, The Netherlands

m Main contributions to understanding of Integer Programming with
Recourse

m with Leen Stougie, Riidiger Schultz
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Stochastic Optimization
LA bit of History

[4 Alexander Shapiro and Tito Homem-de-Mello
A simulation-based approach to two-stage stochastic
programming with recourse. (1998)
Mathematical Programming 81(3):301-325

m Stochastic Programming via Monte Carlo Sampling: Sample
Average Approach

m Much work on convergence properties

m Realization: Often good approximations possible with " relatively”
few samples

N
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Stochastic Optimization
L Next lecture

Next lecture

m Chance-Constrained Programming and related problems

m (Simple Recourse Problems)
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Stochastic Optimization
L Next lecture

QUESTIONS?

What about next-week in 2 weeks?

X
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