Stochastic Optimization IDA PhD course 2011ht

Stefanie Kosuch

PostDok at TCSLab www.kosuch.eu/stefanie/

Lecture: Introduction
 29. September 2011

- 1 Administrative Details
- 2 Course Aims and Structure
- 3 Introduction to Stochastic Programming
 - 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions

Outline

1 Administrative Details

- 2 Course Aims and Structure
- Introduction to Stochastic Programming
 2 examples of SP problems
- Modeling Stochastic Optimization Problem
 The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions

-Administrative Details

Examiner/"Owner": Peter Jonsson Lecturer: Stefanie Kosuch Credits: 5hp

Oral Examination:

- Presentation to be prepared
- Article Review, Practical Assignment, Theoretical Assignment...
- 10-15min: Presentation
- 10-15min: Questions

Schedule

2011/09/29: 1st lecture 2011/10/06: 2nd lecture 2011/10/13: "vacation" 2011/10/20: 3rd lecture 2011/10/27: "Subject Research" 2011/11/03: 4th lecture 2011/11/10: 5th lecture - Examination Subjects 2011/11/17: 6th lecture 2011/11/24: 7th lecture - General Questions on Examination 2011/12/01: 8th lecture 2011/12/08: 9th lecture 2011/12/15: 10th lecture 2012/12/19: First preparation week 2012/01/02: Second preparation week 2012/01/09: Examination week

Administrative Details

Course Material

- Slides (same day or day +1)
- Alexander Shapiro, Darinka Dentcheva, Andrzej Ruszczyński
 Lectures on Stochastic Programming (2009)
 pdf available online
- Peter Kall, Stein W. Wallace
 Stochastic Programming (1994)
 pdf available online
- András Prékopa
 Stochastic Programming (1995)
 Springer.
- Evtl. Additional articles ("further reading")

Outline

1 Administrative Details

- 2 Course Aims and Structure
- Introduction to Stochastic Programming
 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 - The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions

Definition

Stochastic Programming: Study and resolution of Optimization problems that involve uncertainties.

Stochastic Optimization: Concerns Solution methods that

"involve" random variables.

Stochastic Combinatorial Optimization: Study and resolution of Combinatorial Optimization problems that involve uncertainties.

Course Aims and Structure

Aims

- Examples of Optimization Problems that involve uncertainty
- Modeling Optimization Problems that involve uncertainty
- Special Structure of Stochastic Programming (SP) Problems
- Hardness of Stochastic Programming Problems
- Solving Stochastic Programming Problems

Course Contents

- 1 Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems
 - General Structure and basic concepts
- 2 Uncertainty in Objective Function Models, Structure and Hardness
- 3 Uncertainty in Constraint Models, Structure and Hardness
 - a) Chance-Constrained Programming
 - b) Simple Recourse Programming
 - c) Two-Stage Programming
 - d) Multi-Stage Programming
- 4 Algorithms for Stochastic Programming Problems:
 - a) Stochastic Gradient Methods
 - b) Decomposition Methods
 - c) Stochastic Decomposition
- 5 Sample Average Approach
- 6 More "realistic" Examples

Course Aims and Structure

- Robust/Online Optimization
- Approximation Algorithms
- Heuristics for Stochastic Programming Problems

Course Aims and Structure

Structure

Notations: "On the fly" Repetitions: Random Distributions & Complexity (*PLEASE REVISE INDIVIDUALLY*!) Proofs: Basic Ideas / cruxes Questions: Immediately

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- Introduction to Stochastic Programming
 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problem
 The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions

What is the interest of Stochastic Programming?

- "Real world problems" often subject to uncertainties
 - Not all parameters known when decision has to be made: market fluctuations, available capacity...
 - Own decision depends on future decision of other parties: competition, clients, government...
 - Setting of problem might change: weather, location...

- Introduction to Stochastic Programming
 - └─2 examples of SP problems

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- Introduction to Stochastic Programming
 2 examples of SP problems
- Modeling Stochastic Optimization Problem
 The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions

Introduction to Stochastic Programming

2 examples of SP problems

Deterministic Knapsack problem

Introduction to Stochastic Programming

2 examples of SP problems

Stochastic Knapsack problem

Introduction to Stochastic Programming

-2 examples of SP problems

Possible ways to handle capacity constraint

- knapsack constraint violated ⇒ penalty
- probability of capacity violation restricted
- decision can be corrected later (add. costs/reduced rewards)

Introduction to Stochastic Programming

2 examples of SP problems

Stochastic Knapsack problem

Introduction to Stochastic Programming

-2 examples of SP problems

Possible ways to handle capacity constraint

- knapsack constraint violated ⇒ penalty
- probability of capacity violation restricted
- decision can be corrected later (add. costs/reduced rewards)

- Introduction to Stochastic Programming
 - └─2 examples of SP problems

Stochastic Graph Coloring

- Introduction to Stochastic Programming
 - └─2 examples of SP problems

Changing settings

- set of edges random
- set of vertices random

Changing parameters

- allowed number of colors random
- "cost" of colors random

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- Introduction to Stochastic Programming
 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions

 $\mathsf{Deterministic}~\mathsf{Opt}.~\mathsf{Model}\to\mathsf{Stochastic}~\mathsf{Progr}.~\mathsf{Model}$

$$\begin{array}{ll} \max_{x \in X} & f(x) & \min_{x \in X} & f(x, \chi) \\ \text{s.t.} & g(x) \leq 0 & \longrightarrow & \text{s.t.} & g(x, \chi) \leq 0 \end{array}$$

 $\chi \in \Omega \subseteq \mathbb{R}^{s}$: vector with random entries

Difficulties in SP - Modeling

- Information on uncertainty
 - Statistics
 - Simulation
- What can we assume?
 - Full knowledge of random variables
 - Approximation of (continuous) distribution
 - Work with finite sample
- Which Model to choose?
 - Uncertainty in Objective or Constraints
 - What means "feasible"?
 - Can decision be made in stages?

Linköping University

Difficulties in SP - Resolution

- Structural Problem
 - non-convexity
 - non-continuity
 - non-analytic expressions
- Problem Size
- Deterministic or Random Method?

Greatest Challenges in Stochastic Programming

- Modeling Real World problems with uncertainties as SP problems
- Solve "realistic" sized problems in reasonable time
- Find more adapted solution techniques (for general distributions)

└─ Modeling

└─ The "underlying" distributions

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- Introduction to Stochastic Programming
 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions

I: Approximate Distribution

- 1 Observations of random parameters
- 2 "Extract" representative sample
- 3 Approximate distribution:
 - a) Either: Work with discrete sample
 - b) Or: Approximate by continuous distribution

Main Problem

Inexact Approximation

II: Work with sampling

- 1 Keep distribution unknown in model
- 2 "Online" samples in solution process
- $\mathbf{3} \rightarrow \mathsf{Black} \mathsf{ Box} \mathsf{ Model}$

Main Problem

Evaluation of objective/constraint function difficult

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- Introduction to Stochastic Programming
 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions

Notations

- $\mathbb{P}{A}$: Probability that event A arises
- $\mu := \mathbb{E}[X]$: expectation of random variable X
- $\sigma := \sqrt{V(X)}$: standard deviation of random variable X

Density function of *continuous* random variable XProbability mass function of *discrete* random variable X

Φ_X(c)= P{X ≤ c}: Cumulative distribution function of random variable X

arsity

Random vectors

• $\chi \in \mathbb{R}^n$: Random vector

•
$$\chi = (\chi_1, \ldots, \chi_n)$$

- χ_i : Random variable
- Dependent or independent?
- $A(\chi) \in \mathbb{R}^{n_1 \times m_1}$: Matrix with random entries

- Important distributions
 - Continuous distributions

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- Introduction to Stochastic Programming
 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions

Continuous distributions

Important facts on continuous distributions

- Cumulative distribution continuous
- Density function continuous on certain interval(s)

•
$$\forall a \in (-\infty, \infty) : \mathbb{P}\{X = a\} = 0$$

• $\mathbb{E}[X] = \int_{-\infty}^{\infty} y \cdot \varphi_X(y) dy$

Important distributions

└─ Continuous distributions

Normal distribution

Density function:

$$\varphi_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Cumulative distribution function:

$$\Phi_X(c) = ?$$

Examples

- "Natural" measures (body height, shoe size, tree heights...)
- Economic phenomena (e.g. income distribution)
- Data Measurements

Important distributions

Continuous distributions

Uniform distribution

Density function:

$$arphi_X(x) = \left\{ egin{array}{c} rac{1}{b-a} & ext{if } x \in [a,b] \ 0 & ext{otherwise} \end{array}
ight.$$

Cumulative distribution function:

$$\Phi_X(c) = egin{cases} 0 & ext{if} \ c < a \ rac{c-a}{b-a} & ext{if} \ c \in [a,b] \ 1 & ext{if} \ c > b \end{cases}$$

Examples

- Waiting time for bus
- Leak between two access points to pipeline (appr.)

Important distributions

└─ Continuous distributions

Exponential distribution

Density function:

$$arphi_X(x) = \left\{egin{array}{l} \lambda e^{-\lambda x} & ext{if } x \geq 0 \ 0 & ext{otherwise} \end{array}
ight.$$

Cumulative distribution function:

$$\Phi_X(c) = egin{cases} 1-e^{-\lambda c} & ext{if } c\geq 0 \ 0 & ext{otherwise} \end{cases}$$

Examples

- "Lifetime" (light bulbs, batteries, electronic components...)
- Time till next earthquake
- Amount of change in your pocket
- Phone calls (length, time between two calls...)

- Important distributions
 - Discrete distributions

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- Introduction to Stochastic Programming
 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions

Discrete distributions

Some facts on discrete distributions

- Generally concern counts ("Number of...")
- \exists countable set S = S(X) such that

$$\blacksquare \mathbb{P}\{X=a\} > 0 \Leftrightarrow a \in S$$

•
$$\varphi_X(x) = \mathbb{P}\{X = x\}$$

$$\mathbb{E}[X] = \sum_{y \in S} y \mathbb{P}\{X = y\}$$

Cumulative distribution function increases only by jump discontinuities

Discrete distributions

Discrete finite distribution

Probability mass function: $\exists S \text{ with } |S| < \infty \text{ such that}$

$$\mathbb{P}\{X=x\}>0 \Leftrightarrow x \in S$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{\substack{x \in S \\ x \leq c}} \mathbb{P}\{X = x\}$$

Notations

Discrete distributions

Discrete finite distribution

Probability mass function: $\exists S \text{ with } |S| < \infty \text{ such that}$

$$\mathbb{P}\{X=x\}>0 \Leftrightarrow x \in S$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{\substack{x \in S \\ x \leq c}} \mathbb{P}\{X = x\}$$

Examples

- Discrete random variables with bounds (e.g. utilized capacity)
- Approximation of (continuous) distribution by finite sample

Discrete distributions

Discrete uniform distribution

Probability mass function: $\exists S \text{ with } |S| < \infty \text{ such that}$

$$\mathbb{P}\{X = x\} = 1/|S| \Leftrightarrow x \in S$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{\substack{x \in S \ x \leq c}} 1/|S|$$

Examples

Throwing a die

Lottery

Discrete distributions

Bernoulli distribution

Probability mass function:

$$\mathbb{P}{X = 1} = p \text{ and } \mathbb{P}{X = 0} = 1 - p$$

Cumulative distribution function:

$$\Phi_X(c) = egin{cases} 0 & ext{if} \ c \in (-\infty, 0) \ 1-p & ext{if} \ c \in [0, 1) \ 1 & ext{if} \ c \in [1, \infty) \end{cases}$$

Examples

Success/Failure

"Yes/No" Events

Important distributions

Discrete distributions

Poisson distribution

Probability mass function:

$$arphi_X(k) = rac{\lambda^k e^{-\lambda}}{k!} \quad (k \in \mathbb{Z})$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{i=0}^c \frac{\lambda^i e^{-\lambda}}{i!}$$

Appropriate model for counts

- # phone calls
- # type errors on a page
- \blacksquare # white blood cells found in a cubic centimeter of blood
- Large $\lambda \rightarrow$ normal distribution

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- Introduction to Stochastic Programming
 2 examples of SP problems
- Modeling Stochastic Optimization Problem:
 The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions

Decision Problems

- P: Polynomial time solvable
- NP: Verification of "yes"-instance in polynomial time
- NP-hard: "at least as hard as the hardest problems in NP"
- NP-complete: NP-hard problems in NP

Counting Problems

- $\sharp P$: Counting problems associated with problems in NP
- *‡P*-complete:

In \prescript{P} and every problem in \prescript{P} can be reduced to it

$\sharp P$ -complete problems

- "How many graph colorings using k colors are there for a particular graph G?"
- "How many perfect matchings are there for a given bipartite graph?"

 $\sharp P$ -complete problem solvable in pol. time $\Rightarrow P = NP$

- A little bit of history.
- (Some more small examples.)
- Uncertainty in the objective function.

QUESTIONS?

