Stochastic Optimization IDA PhD course 2011ht

Stefanie Kosuch

PostDok at TCSLab www.kosuch.eu/stefanie/

Lecture: Computational examples
 09. February 2012

2 Simple example

2 Simple example

3 Multiperiod Batch Plant Scheduling

Outline

1 Why and when Stochastic Programming might be advantageous?

2 Simple example

3 Multiperiod Batch Plant Scheduling

Is-Situation

Is-Situation

Use average/expecteted values

- Use average/expecteted values
- No adaptations to current situation

- Use average/expecteted values
- No adaptations to current situation

- Use average/expecteted values
- No adaptations to current situation

Disadvantages

■ Average gain ≠ computed expected value

- Use average/expecteted values
- No adaptations to current situation

Disadvantages

- Average gain ≠ computed expected value
- No flexibility

- Use average/expecteted values
- No adaptations to current situation

Disadvantages

- Average gain ≠ computed expected value
- No flexibility
- Solution not robust

- Use average/expecteted values
- No adaptations to current situation

Disadvantages

- Average gain ≠ computed expected value
- No flexibility
- Solution not robust
- Might entail infeasible solutions

Solutions

Online Optimization

Solutions

Online Optimization ?

- Online Optimization ?
- Robust Optimization

- Online Optimization ?
- Robust Optimization
- Stochastic Programming

- Online Optimization ?
- Robust Optimization
- Stochastic Programming
- ...

Typical application fields

- Capacity planning
- Energy sector
- Finance
- Forestry
- Military
- Production / Supply chain
- Scheduling
- Transportation (of humans, goods,...)
- Water management
- ...

Outline

1 Why and when Stochastic Programming might be advantageous?

2 Simple example

3 Multiperiod Batch Plant Scheduling

$$\max_{x \in [0,1]^3} c^T x$$

s.t. $a^T x \le \chi$

$$\max_{x \in [0,1]^3} c^T x$$

s.t. $a^T x \le \chi$

•
$$c = (10, 15, 20)$$

$$\max_{x \in [0,1]^3} c^T x$$

s.t. $a^T x \le \chi$

$$\max_{\mathbf{x} \in [0,1]^3} c^T x$$

s.t. $a^T x \le \chi$

•
$$c = (10, 15, 20)$$

• $a = (5, 10, 20)$
• $p_1 = \mathbb{P}\{\chi = \chi_1\} = \mathbb{P}\{\chi = 3\} = 0.2$

$$\begin{array}{ll} \max_{x \in [0,1]^3} & c^T x \\ \text{s.t.} & a^T x \leq \chi \end{array}$$

•
$$c = (10, 15, 20)$$

• $a = (5, 10, 20)$
• $p_1 = \mathbb{P}\{\chi = \chi_1\} = \mathbb{P}\{\chi = 3\} = 0.2$
• $p_2 = \mathbb{P}\{\chi = \chi_2\} = \mathbb{P}\{\chi = 12\} = 0.3$

$$\begin{array}{ll} \max_{x\in[0,1]^3} & c^T x \\ \text{s.t.} & a^T x \leq \chi \end{array}$$

•
$$c = (10, 15, 20)$$

• $a = (5, 10, 20)$
• $p_1 = \mathbb{P}\{\chi = \chi_1\} = \mathbb{P}\{\chi = 3\} = 0.2$
• $p_2 = \mathbb{P}\{\chi = \chi_2\} = \mathbb{P}\{\chi = 12\} = 0.3$
• $p_3 = \mathbb{P}\{\chi = \chi_3\} = \mathbb{P}\{\chi = 25\} = 0.5$

$$\max_{\substack{\substack{\substack{\leftarrow \in [0,1]^3}}} & c^T x(\chi) \\ \text{s.t.} & a^T x(\chi) \le \chi \end{cases}$$

$$\max_{\substack{x \in [0,1]^3}} c^T x(\chi)$$

s.t. $a^T x(\chi) \le \chi$

•
$$x(3) = (0.6; 0; 0)^T; z(3) = 6$$

$$\max_{\substack{x \in [0,1]^3}} c^T x(\chi)$$

s.t. $a^T x(\chi) \le \chi$

•
$$x(3) = (0.6; 0; 0)^T; z(3) = 6$$

• $x(12) = (1; 0.7; 0)^T; z(12) = 20.5$

$$\max_{\substack{x \in [0,1]^3}} c^T x(\chi)$$

s.t. $a^T x(\chi) \le \chi$

•
$$x(3) = (0.6; 0; 0)^T; z(3) = 6$$

• $x(12) = (1; 0.7; 0)^T; z(12) = 20.5$
• $x(25) = (1; 1; 0.5)^T; z(25) = 35$

$$\max_{\substack{x \in [0,1]^3}} c^T x(\chi)$$

s.t. $a^T x(\chi) \le \chi$

•
$$x(3) = (0.6; 0; 0)^T; z(3) = 6$$

• $x(12) = (1; 0.7; 0)^T; z(12) = 20.5$
• $x(25) = (1; 1; 0.5)^T; z(25) = 35$
• $z = \mathbb{E}[z(\chi)] = \sum_{i=1}^3 p_i z(\chi) = 24.85$

Average value approach

$$\max_{\substack{x \in [0,1]^3}} c^T x$$

s.t. $a^T x \le 16.7$

Average value approach

$$\begin{array}{ll} \max_{x \in [0,1]^3} & c^T x \\ \text{s.t.} & a^T x \leq 16.7 \end{array}$$

•
$$x = (1; 1; 0.085)^T$$

Average value approach

$$\begin{array}{ll} \max_{x \in [0,1]^3} & c^T x \\ \text{s.t.} & a^T x \leq 16.7 \end{array}$$

$$\begin{array}{ll} \max_{x \in [0,1]^3} & c^T x \\ \text{s.t.} & a^T x \leq \inf_{\chi \in \Omega} \chi \end{array}$$

$$\max_{\substack{x \in [0,1]^3}} c^T x$$

s.t. $a^T x \le \inf_{\chi \in \Omega} \chi$

•
$$x = (0.6; 0; 0)^T$$

$$\max_{\substack{x \in [0,1]^3}} c^T x$$

s.t. $a^T x \le \inf_{\chi \in \Omega} \chi$

•
$$x = (0.6; 0; 0)^T$$

• $z = 6$

$$\begin{array}{ll} \max_{\mathbf{x} \in [0,1]^3} & \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} & \mathbb{P}\{\boldsymbol{a}^T \boldsymbol{x} \leq \chi\} \geq \alpha \end{array}$$

$$\max_{\mathsf{x} \in [0,1]^3} c^{\mathsf{T}} x$$

s.t. $\mathbb{P} \{ a^{\mathsf{T}} x \le \chi \} \ge \alpha$

$$\mathbb{P}\{a^T x \le \chi\} \ge 0.8 \Leftrightarrow a^T x \le \sup\{t | \mathbb{P}\{\chi < t\} \le 0.2\}$$

$$\begin{array}{ll} \max_{\mathbf{x} \in [0,1]^3} & \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} & \mathbb{P}\{\boldsymbol{a}^T \boldsymbol{x} \leq \chi\} \geq \alpha \end{array}$$

$$\blacksquare \mathbb{P}\{a^T x \le \chi\} \ge 0.8 \Leftrightarrow a^T x \le 12$$

$$\begin{array}{ll} \max_{\mathbf{x} \in [0,1]^3} & \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} & \mathbb{P}\{\boldsymbol{a}^T \boldsymbol{x} \leq \chi\} \geq \alpha \end{array}$$

$$\mathbb{P}\{a^T x \le \chi\} \ge 0.8 \Leftrightarrow a^T x \le 12$$
$$\mathbb{P}\{a^T x \le \chi\} \ge 0.8 \Leftrightarrow a^T x \le 12$$

$$\begin{array}{ll} \max_{\mathbf{x} \in [0,1]^3} & \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} & \mathbb{P}\{\boldsymbol{a}^T \boldsymbol{x} \leq \chi\} \geq \alpha \end{array}$$

$$\mathbb{P}\{a^T x \le \chi\} \ge 0.8 \Leftrightarrow a^T x \le 12$$
$$x = (1; 0.7; 0)^T$$
$$z = 20.5$$

$$\max_{i \in [0,1]^3} c^T x - \sum_{i=1}^3 p_i q(\chi_i) y(\chi_i)$$

s.t. $a^T x - y(\chi_i) \le \chi_i \quad \forall i$

$$\max_{\in [0,1]^3} \quad c^T x - \sum_{i=1}^{\circ} p_i q(\chi_i) y(\chi_i)$$

s.t. $a^T x - y(\chi_i) \le \chi_i \quad \forall i$

3

•
$$q(\chi_1) = 2; q(\chi_2) = 3; q(\chi_3) = 6$$

$$\max_{\substack{k \in [0,1]^3 \\ \text{s.t.}}} c^T x - \sum_{i=1}^3 p_i q(\chi_i) y(\chi_i)$$

s.t. $a^T x - y(\chi_i) \le \chi_i \quad \forall i$

•
$$q(\chi_1) = 2; q(\chi_2) = 3; q(\chi_3) = 6$$

• $x = (1; 1; 0)^T$

$$\max_{\substack{x \in [0,1]^3 \\ \text{s.t.}}} c^T x - \sum_{i=1}^3 p_i q(\chi_i) y(\chi_i)$$
$$s.t. \quad a^T x - y(\chi_i) \le \chi_i \quad \forall i$$

•
$$q(\chi_1) = 2; q(\chi_2) = 3; q(\chi_3) = 6$$

• $x = (1; 1; 0)^T$
• $y(\chi_1) = 12$

$$\max_{\substack{x \in [0,1]^3 \\ \text{s.t.}}} c^T x - \sum_{i=1}^3 p_i q(\chi_i) y(\chi_i)$$
$$s.t. \quad a^T x - y(\chi_i) \le \chi_i \quad \forall i$$

•
$$q(\chi_1) = 2; q(\chi_2) = 3; q(\chi_3) = 6$$

• $x = (1; 1; 0)^T$
• $y(\chi_1) = 12$
• $y(\chi_2) = 3$

$$\max_{\substack{\substack{k \in [0,1]^3 \\ \text{s.t.}}}} c^T x - \sum_{i=1}^3 p_i q(\chi_i) y(\chi_i)$$

s.t. $a^T x - y(\chi_i) \le \chi_i \quad \forall i$

$$q(\chi_1) = 2; q(\chi_2) = 3; q(\chi_3) = 6$$

$$x = (1; 1; 0)^T$$

$$y(\chi_1) = 12$$

$$y(\chi_2) = 3$$

$$y(\chi_3) = 0$$

$$\max_{\substack{x \in [0,1]^3 \\ \text{s.t.}}} c^T x - \sum_{i=1}^3 p_i q(\chi_i) y(\chi_i)$$
$$s.t. \quad a^T x - y(\chi_i) \le \chi_i \quad \forall i$$

•
$$q(\chi_1) = 2; q(\chi_2) = 3; q(\chi_3) = 6$$

• $x = (1; 1; 0)^T$
• $y(\chi_1) = 12$
• $y(\chi_2) = 3$
• $y(\chi_3) = 0$
• $z = 17.5$

Simple Recourse Approach

Simple Recourse Approach

$$\max_{\boldsymbol{x} \in [0,1]^3} \quad \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x} - \mathbb{E}[\boldsymbol{q}(\boldsymbol{\chi})[\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x} - \boldsymbol{\chi}]^+]$$

Simple Recourse Approach

x

$$\max_{\in [0,1]^3} c^T x - \mathbb{E}[q(\chi)[a^T x - \chi]^+]$$

■ *z* = 17.5

Outline

1 Why and when Stochastic Programming might be advantageous?

2 Simple example

3 Multiperiod Batch Plant Scheduling

Reference

J. Balasubramanian and I. E. Grossmann

Approximation to Multistage Stochastic Optimization in Multiperiod Batch Plant Scheduling under Demand Uncertainty. (2003) http://egon.cheme.cmu.edu/Papers/BalasubMultistage.pdf

Different products

- Different products
- Different stages

- Different products
- Different stages
- Different costs (materials, stockage/holding, under-production...)

- Different products
- Different stages
- Different costs (materials, stockage/holding, under-production...)
- \Rightarrow Hard scheduling problem

- Different products
- Different stages
- Different costs (materials, stockage/holding, under-production...)
- \Rightarrow Hard scheduling problem

- Different products
- Different stages
- Different costs (materials, stockage/holding, under-production...)
- \Rightarrow Hard scheduling problem

Uncertainties

- Different products
- Different stages
- Different costs (materials, stockage/holding, under-production...)
- \Rightarrow Hard scheduling problem

Uncertainties

Demand

- Different products
- Different stages
- Different costs (materials, stockage/holding, under-production...)
- \Rightarrow Hard scheduling problem

Uncertainties

- Demand
- Processing times

- Different products
- Different stages
- Different costs (materials, stockage/holding, under-production...)
- \Rightarrow Hard scheduling problem

Uncertainties

- Demand
- Processing times
- Costs

Long processing times

- Long processing times
- Need to make predictions

- Long processing times
- Need to make predictions
- $\blacksquare \ Holding/storage \ costs \leftrightarrow idle \ costs$

- Long processing times
- Need to make predictions
- $\blacksquare \ Holding/storage \ costs \leftrightarrow idle \ costs$
- \blacksquare Difficult mathematical problem \leftrightarrow reaction times

single-stage single-unit bath plant

- single-stage single-unit bath plant
- 2 products

- single-stage single-unit bath plant
- 2 products
- 3 processing modes (batch sizes)

- single-stage single-unit bath plant
- 2 products
- 3 processing modes (batch sizes)
- Uncertain demand

- single-stage single-unit bath plant
- 2 products
- 3 processing modes (batch sizes)
- Uncertain demand
- 2 time periods (same demand distribution)

Product	Batch size (tons)	Proc. time	REV (\$/tons)	XC (\$/tons)	LC (\$/tons)
A	0-5 5-10 10-25	2 4 6	100	10	20
В	0-5 5-10 10-25	3 5 7	250	20	50

Product	Batch size (tons)	Proc. time	e REV (\$/tons)	XC (\$/tons)	LC (\$/tons)
A	0-5 5-10 10-25	2 4 6	100	10	20
В	0-5 5-10 10-25	3 5 7	250	20	50
	Event	Probability	Demands (tons)	
	1	0.25	A:10, B	:0	Supervice Christian
	2	0.75	A:20, B	:5	Linköping Univ

Linköping University

Deterministic approach

Multiperiod Batch Plant Scheduling

Deterministic approach

Work with expected demands over entire horizon

Deterministic approach

- Work with expected demands over entire horizon
- Model predicts: \$5375

Deterministic approach

- Work with expected demands over entire horizon
- Model predicts: \$5375
- Actual expected profit: \$4559

Two-Stage approach

Multiperiod Batch Plant Scheduling

Two-Stage approach

First-stage: production scheduling over both time periods

Two-Stage approach

- First-stage: production scheduling over both time periods
- Second-stage: Amount to be sold / Unsatisfied amount

Two-Stage approach

- First-stage: production scheduling over both time periods
- Second-stage: Amount to be sold / Unsatisfied amount
- Expected profit: \$5275 (+15%)

First-stage: production scheduling over 1. period

- First-stage: production scheduling over 1. period
- Second-stage: production scheduling over 2. period

- First-stage: production scheduling over 1. period
- Second-stage: production scheduling over 2. period
- Third-stage: Amount to be sold / Unsatisfied amount

- First-stage: production scheduling over 1. period
- Second-stage: production scheduling over 2. period
- Third-stage: Amount to be sold / Unsatisfied amount
- Expected profit: \$5325 (+17%)

Approximate solution

- Approximate solution
- Shrinking time horizon strategy

- Approximate solution
- Shrinking time horizon strategy
- Basic structure

- Approximate solution
- Shrinking time horizon strategy
- Basic structure
 - Solve two-stage problem over remaining time horizon (given past demands)

- Approximate solution
- Shrinking time horizon strategy
- Basic structure
 - Solve two-stage problem over remaining time horizon (given past demands)
 - Implement solution only in next time period

- Approximate solution
- Shrinking time horizon strategy
- Basic structure
 - Solve two-stage problem over remaining time horizon (given past demands)
 - Implement solution only in next time period

- Approximate solution
- Shrinking time horizon strategy
- Basic structure
 - Solve two-stage problem over remaining time horizon (given past demands)
 - Implement solution only in next time period

Problem solved in advance! (\neq online optimization)

- Approximate solution
- Shrinking time horizon strategy
- Basic structure
 - Solve two-stage problem over remaining time horizon (given past demands)
 - Implement solution only in next time period

■ Problem solved in advance! (≠ online optimization)

Two-Stage problem for all nodes in scenario tree

1. Numerical Example

single product

- single product
- 3 stages

- single product
- 3 stages
- 3 processing modes each

- single product
- 3 stages
- 3 processing modes each
- 5 time periods (different probability distributions)

Approach	Expected revenue (1000\$)	+	CPU time (sec)
Det.	656.23	0%	3
2-stage	672.04	2%	20
SH	717.32	9%	360
6-stage	722.43	10%	>50,000

Multiperiod Batch Plant Scheduling

4 products

- 4 products
- 8 tasks

- 4 products
- 8 tasks
- 6 processing units

- 4 products
- 8 tasks
- 6 processing units
- 3 processing modes for each combination

- 4 products
- 8 tasks
- 6 processing units
- 3 processing modes for each combination
- 3 time periods (different probability distributions)

Approach	Expected revenue (\$)	+	CPU time (sec)
Det.	59,573	0%	10
2-stage	62,945	6%	35
SH	75,452	27%	180
4-stage	75,851	27%	>100,000

 \blacksquare Working with average values \rightarrow false estimations

- \blacksquare Working with average values \rightarrow false estimations
- Choosing two/multi-stage model: important increase in gain

- \blacksquare Working with average values \rightarrow false estimations
- Choosing two/multi-stage model: important increase in gain
- Approximations help to decrease CPU time

- \blacksquare Working with average values \rightarrow false estimations
- Choosing two/multi-stage model: important increase in gain
- Approximations help to decrease CPU time
- Approximations still much better than det. model

QUESTIONS?

Tack sa mycket!

