Stochastic Optimization IDA PhD course 2011ht

Stefanie Kosuch

PostDok at TCSLab www.kosuch.eu/stefanie/

Lecture: Introduction
 September 2011

1 Administrative Details

- 1 Administrative Details
- 2 Course Aims and Structure

- 1 Administrative Details
- 2 Course Aims and Structure
- 3 Introduction to Stochastic Programming
 - 2 examples of SP problems

- 1 Administrative Details
- 2 Course Aims and Structure
- 3 Introduction to Stochastic Programming
 - 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 - The "underlying" distributions

- 1 Administrative Details
- 2 Course Aims and Structure
- 3 Introduction to Stochastic Programming
 - 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 - The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions

- 1 Administrative Details
- 2 Course Aims and Structure
- 3 Introduction to Stochastic Programming
 - 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 - The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions
- 6 Complexity

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- 3 Introduction to Stochastic Programming
 - 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 - The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions
- 6 Complexity

Examiner/"Owner": Peter Jonsson

Examiner/"Owner": Peter Jonsson

Lecturer: Stefanie Kosuch

Examiner/"Owner": Peter Jonsson

Lecturer: Stefanie Kosuch

Credits: 5hp

Oral Examination:

Presentation to be prepared

Oral Examination:

- Presentation to be prepared
- Article Review, Practical Assignment, Theoretical Assignment...

Oral Examination:

- Presentation to be prepared
- Article Review, Practical Assignment, Theoretical Assignment...
- 10-15min: Presentation

Oral Examination:

- Presentation to be prepared
- Article Review, Practical Assignment, Theoretical Assignment...
- 10-15min: Presentation
- 10-15min: Questions

Schedule

```
2011/09/29: 1st lecture
2011/10/06: 2nd lecture
2011/10/13: "vacation"
2011/10/20: 3rd lecture
2011/10/27: "Subject Research"
2011/11/03: 4th lecture
2011/11/10: 5th lecture - Examination Subjects
2011/11/17: 6th lecture
2011/11/24: 7th lecture - General Questions on Examination
2011/12/01: 8th lecture
2011/12/08: 9th lecture
2011/12/15: 10th lecture
2012/12/19: First preparation week
2012/01/02: Second preparation week
2012/01/09: Examination week
```

■ Slides (same day or day +1)

- Slides (same day or day +1)
- Alexander Shapiro, Darinka Dentcheva, Andrzej Ruszczyński
 Lectures on Stochastic Programming (2009)
 pdf available online

- Slides (same day or day +1)
- Alexander Shapiro, Darinka Dentcheva, Andrzej Ruszczyński
 Lectures on Stochastic Programming (2009)
 pdf available online
- Peter Kall, Stein W. Wallace
 Stochastic Programming (1994)
 pdf available online

- Slides (same day or day +1)
- Alexander Shapiro, Darinka Dentcheva, Andrzej Ruszczyński
 Lectures on Stochastic Programming (2009)
 pdf available online
- Peter Kall, Stein W. Wallace
 Stochastic Programming (1994)
 pdf available online
- András Prékopa
 Stochastic Programming (1995)
 Springer.

- Slides (same day or day +1)
- Alexander Shapiro, Darinka Dentcheva, Andrzej Ruszczyński
 Lectures on Stochastic Programming (2009)
 pdf available online
- Peter Kall, Stein W. Wallace
 Stochastic Programming (1994)
 pdf available online
- András Prékopa
 Stochastic Programming (1995)
 Springer.
- Evtl. Additional articles ("further reading")

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- 3 Introduction to Stochastic Programming
 - 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 - The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions
- 6 Complexity

Course Aims and Structure

Definition			

Definition

Stochastic Programming: Study and resolution of Optimization problems that involve uncertainties.

Definition

Stochastic Programming: Study and resolution of Optimization problems that involve uncertainties.

Stochastic Optimization: Concerns Solution methods that "involve" random variables.

Definition

Stochastic Programming: Study and resolution of Optimization problems that involve uncertainties.

Stochastic Optimization: Concerns Solution methods that "involve" random variables.

Stochastic Combinatorial Optimization: Study and resolution of Combinatorial Optimization problems that involve uncertainties.

Examples of Optimization Problems that involve uncertainty

- Examples of Optimization Problems that involve uncertainty
- Modeling Optimization Problems that involve uncertainty

- Examples of Optimization Problems that involve uncertainty
- Modeling Optimization Problems that involve uncertainty
- Special Structure of Stochastic Programming (SP) Problems

- Examples of Optimization Problems that involve uncertainty
- Modeling Optimization Problems that involve uncertainty
- Special Structure of Stochastic Programming (SP) Problems
- Hardness of Stochastic Programming Problems

- Examples of Optimization Problems that involve uncertainty
- Modeling Optimization Problems that involve uncertainty
- Special Structure of Stochastic Programming (SP) Problems
- Hardness of Stochastic Programming Problems
- Solving Stochastic Programming Problems

1 Introduction:

- 1 Introduction:
 - Why Stochastic Programming?

- Introduction:
 - Why Stochastic Programming?
 - History

- 1 Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems

- 1 Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems
 - General Structure and basic concepts

- 1 Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems
 - General Structure and basic concepts
- Uncertainty in Objective Function Models, Structure and Hardness

- Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems
 - General Structure and basic concepts
- 2 Uncertainty in Objective Function Models, Structure and Hardness
- Uncertainty in Constraint Models, Structure and Hardness

- 1 Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems
 - General Structure and basic concepts
- 2 Uncertainty in Objective Function Models, Structure and Hardness
- 3 Uncertainty in Constraint Models, Structure and Hardness
 - a) Chance-Constrained Programming

- 1 Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems
 - General Structure and basic concepts
- Uncertainty in Objective Function Models, Structure and Hardness
- 3 Uncertainty in Constraint Models, Structure and Hardness
 - a) Chance-Constrained Programming
 - b) Simple Recourse Programming

- Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems
 - General Structure and basic concepts
- 2 Uncertainty in Objective Function Models, Structure and Hardness
- 3 Uncertainty in Constraint Models, Structure and Hardness
 - a) Chance-Constrained Programming
 - b) Simple Recourse Programming
 - c) Two-Stage Programming

- Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems
 - General Structure and basic concepts
- 2 Uncertainty in Objective Function Models, Structure and Hardness
- 3 Uncertainty in Constraint Models, Structure and Hardness
 - a) Chance-Constrained Programming
 - b) Simple Recourse Programming
 - c) Two-Stage Programming
 - Multi-Stage Programming

- 1 Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems
 - General Structure and basic concepts
- 2 Uncertainty in Objective Function Models, Structure and Hardness
- 3 Uncertainty in Constraint Models, Structure and Hardness
 - a) Chance-Constrained Programming
 - b) Simple Recourse Programming
 - c) Two-Stage Programming
 - d) Multi-Stage Programming
- 4 Algorithms for Stochastic Programming Problems:

- 1 Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems
 - General Structure and basic concepts
- 2 Uncertainty in Objective Function Models, Structure and Hardness
- 3 Uncertainty in Constraint Models, Structure and Hardness
 - a) Chance-Constrained Programming
 - b) Simple Recourse Programming
 - c) Two-Stage Programming
 - d) Multi-Stage Programming
- 4 Algorithms for Stochastic Programming Problems:
 - a) Stochastic Gradient Methods

- 1 Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems
 - General Structure and basic concepts
- 2 Uncertainty in Objective Function Models, Structure and Hardness
- 3 Uncertainty in Constraint Models, Structure and Hardness
 - a) Chance-Constrained Programming
 - b) Simple Recourse Programming
 - c) Two-Stage Programming
 - d) Multi-Stage Programming
- 4 Algorithms for Stochastic Programming Problems:
 - a) Stochastic Gradient Methods
 - b) Decomposition Methods

- 1 Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems
 - General Structure and basic concepts
- 2 Uncertainty in Objective Function Models, Structure and Hardness
- 3 Uncertainty in Constraint Models, Structure and Hardness
 - a) Chance-Constrained Programming
 - b) Simple Recourse Programming
 - c) Two-Stage Programming
 - d) Multi-Stage Programming
- 4 Algorithms for Stochastic Programming Problems:
 - a) Stochastic Gradient Methods
 - b) Decomposition Methods
 - c) Stochastic Decomposition

- Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems
 - General Structure and basic concepts
- 2 Uncertainty in Objective Function Models, Structure and Hardness
- 3 Uncertainty in Constraint Models, Structure and Hardness
 - a) Chance-Constrained Programming
 - b) Simple Recourse Programming
 - c) Two-Stage Programming
 - Multi-Stage Programming
- 4 Algorithms for Stochastic Programming Problems:
 - a) Stochastic Gradient Methods
 - **Decomposition Methods**
 - c) Stochastic Decomposition
- 5 Sample Average Approach

- 1 Introduction:
 - Why Stochastic Programming?
 - History
 - Small Examples of SP problems
 - General Structure and basic concepts
- 2 Uncertainty in Objective Function Models, Structure and Hardness
- 3 Uncertainty in Constraint Models, Structure and Hardness
 - a) Chance-Constrained Programming
 - b) Simple Recourse Programming
 - c) Two-Stage Programming
 - d) Multi-Stage Programming
- 4 Algorithms for Stochastic Programming Problems:
 - a) Stochastic Gradient Methods
 - b) Decomposition Methods
 - c) Stochastic Decomposition
- 5 Sample Average Approach
- 6 More "realistic" Examples

Optional Contents

■ Robust/Online Optimization

Optional Contents

- Robust/Online Optimization
- Approximation Algorithms

Optional Contents

- Robust/Online Optimization
- Approximation Algorithms
- Heuristics for Stochastic Programming Problems

Course Aims and Structure

Structure

Notations: "On the fly"

Structure

Notations: "On the fly"

Repetitions: Random Distributions & Complexity

(PLEASE REVISE INDIVIDUALLY!)

Structure

Notations: "On the fly"

Repetitions: Random Distributions & Complexity

(PLEASE REVISE INDIVIDUALLY!)

Proofs: Basic Ideas / cruxes

Structure

Notations: "On the fly"

Repetitions: Random Distributions & Complexity

(PLEASE REVISE INDIVIDUALLY!)

Proofs: Basic Ideas / cruxes

Questions: Immediately

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- 3 Introduction to Stochastic Programming
 - 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 - The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions
- 6 Complexity

"Real world problems" often subject to uncertainties

"Real world problems" often subject to uncertainties

■ Not all parameters known when decision has to be made: market fluctuations, available capacity...

"Real world problems" often subject to uncertainties

- Not all parameters known when decision has to be made: market fluctuations, available capacity...
- Own decision depends on future decision of other parties: competition, clients, government...

"Real world problems" often subject to uncertainties

- Not all parameters known when decision has to be made: market fluctuations, available capacity...
- Own decision depends on future decision of other parties: competition, clients, government...
- Setting of problem might change: weather. location...

What is the interest of Stochastic Programming?

"Real world problems" often subject to uncertainties

- Not all parameters known when decision has to be made: market fluctuations, available capacity...
- Own decision depends on future decision of other parties: competition, clients, government...
- Setting of problem might change: weather, location...

└2 examples of SP problems

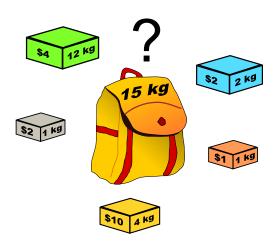
Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- 3 Introduction to Stochastic Programming
 - 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 - The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions
- 6 Complexity

Introduction to Stochastic Programming

2 examples of SP problems

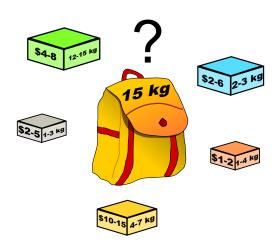
Deterministic Knapsack problem



Introduction to Stochastic Programming

2 examples of SP problems

Stochastic Knapsack problem



Introduction to Stochastic Programming 2 examples of SP problems

Possible ways to handle capacity constraint

Introduction to Stochastic Programming

└2 examples of SP problems

Possible ways to handle capacity constraint

■ knapsack constraint violated ⇒ penalty

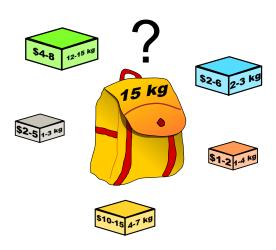
- Introduction to Stochastic Programming
 - L2 examples of SP problems

Possible ways to handle capacity constraint

- knapsack constraint violated ⇒ penalty
- probability of capacity violation restricted

2 examples of SP problems

Stochastic Knapsack problem



- Introduction to Stochastic Programming
 - └2 examples of SP problems

Possible ways to handle capacity constraint

- knapsack constraint violated ⇒ penalty
- probability of capacity violation restricted

- Introduction to Stochastic Programming
 - 2 examples of SP problems

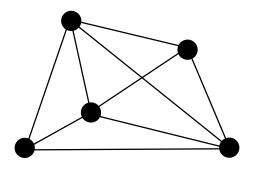
Possible ways to handle capacity constraint

- knapsack constraint violated ⇒ penalty
- probability of capacity violation restricted
- decision can be corrected later (add. costs/reduced rewards)

Introduction to Stochastic Programming

∟₂ examples of SP problems

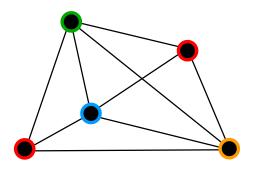
Deterministic Graph Coloring



Introduction to Stochastic Programming

└2 examples of SP problems

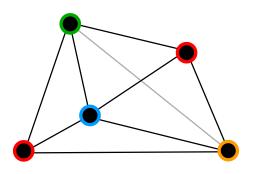
Deterministic Graph Coloring



Introduction to Stochastic Programming

∟_{2 examples of SP problems}

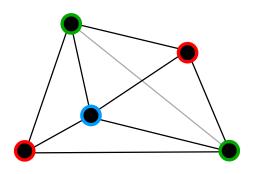
Stochastic Graph Coloring



Introduction to Stochastic Programming

└2 examples of SP problems

Stochastic Graph Coloring



Stochastic Optimization Introduction to Stochastic Programming 2 examples of SP problems

Changing settings

Stochastic Optimization

Introduction to Stochastic Programming

L2 examples of SP problems

Changing settings

set of edges random

Stochastic Optimization

Introduction to Stochastic Programming

L2 examples of SP problems

Changing settings

- set of edges random
- set of vertices random

Stochastic Optimization

Introduction to Stochastic Programming

L2 examples of SP problems

Changing settings

- set of edges random
- set of vertices random

- Introduction to Stochastic Programming
 - └2 examples of SP problems

Changing settings

- set of edges random
- set of vertices random

Changing parameters

Introduction to Stochastic Programming

2 examples of SP problems

Changing settings

- set of edges random
- set of vertices random

Changing parameters

allowed number of colors random

- Introduction to Stochastic Programming
 - └2 examples of SP problems

Changing settings

- set of edges random
- set of vertices random

Changing parameters

- allowed number of colors random
- "cost" of colors random

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- Introduction to Stochastic Programming2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 - The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions
- 6 Complexity

Deterministic Opt. Model → Stochastic Progr. Model

$$\max_{x \in X} f(x)$$

s.t. $g(x) \le 0$

Modeling

Deterministic Opt. Model → Stochastic Progr. Model

$$\max_{x \in X} \quad f(x) \qquad \qquad \min_{x \in X} \quad f(x, \chi)$$
 s.t. $g(x) \le 0$ \rightarrow s.t. $g(x, \chi) \le 0$

Stefanie Kosuch

Deterministic Opt. Model → Stochastic Progr. Model

$$\begin{array}{lll} \max\limits_{x \in X} & f(x) & \min\limits_{x \in X} & f(x,\chi) \\ \text{s.t.} & g(x) \leq 0 & \to & \text{s.t.} & g(x,\chi) \leq 0 \end{array}$$

 $\chi \in \Omega \subseteq \mathbb{R}^s$: vector with random entries

Stefanie Kosuch

Deterministic Opt. Model → Stochastic Progr. Model

$$\max_{x \in X} f(x) \qquad \min_{x \in X} f(x, \chi)$$

s.t. $g(x) \le 0$ \rightarrow s.t. $g(x) \le 0$

 $\chi \in \Omega \subseteq \mathbb{R}^s$: vector with random entries

Deterministic Opt. Model \rightarrow Stochastic Progr. Model

$$\max_{x \in X} f(x) \qquad \min_{x \in X} f(x)$$

s.t. $g(x) \le 0$ \rightarrow s.t. $g(x, \chi) \le 0$

 $\chi \in \Omega \subseteq \mathbb{R}^s$: vector with random entries

Deterministic Opt. Model → Stochastic Progr. Model

$$\begin{array}{lll} \max\limits_{x \in X} & f(x) & \min\limits_{x \in X} & f(x,\chi) \\ \text{s.t.} & g(x) \leq 0 & \to & \text{s.t.} & g(x,\chi) \leq 0 \end{array}$$

 $\chi \in \Omega \subseteq \mathbb{R}^s$: vector with random entries

Stefanie Kosuch

Information on uncertainty

- Information on uncertainty
 - Statistics

- Information on uncertainty
 - Statistics
 - Simulation

- Information on uncertainty
 - Statistics
 - Simulation
- What can we assume?

- Information on uncertainty
 - Statistics
 - Simulation
- What can we assume?
 - Full knowledge of random variables

- Information on uncertainty
 - Statistics
 - Simulation
- What can we assume?
 - Full knowledge of random variables
 - Approximation of (continuous) distribution

- Information on uncertainty
 - Statistics
 - Simulation
- What can we assume?
 - Full knowledge of random variables
 - Approximation of (continuous) distribution
 - Work with finite sample

- Information on uncertainty
 - Statistics
 - Simulation
- What can we assume?
 - Full knowledge of random variables
 - Approximation of (continuous) distribution
 - Work with finite sample
- Which Model to choose?

- Information on uncertainty
 - Statistics
 - Simulation
- What can we assume?
 - Full knowledge of random variables
 - Approximation of (continuous) distribution
 - Work with finite sample
- Which Model to choose?
 - Uncertainty in Objective or Constraints

- Information on uncertainty
 - Statistics
 - Simulation
- What can we assume?
 - Full knowledge of random variables
 - Approximation of (continuous) distribution
 - Work with finite sample
- Which Model to choose?
 - Uncertainty in Objective or Constraints
 - What means "feasible"?

- Information on uncertainty
 - Statistics
 - Simulation
- What can we assume?
 - Full knowledge of random variables
 - Approximation of (continuous) distribution
 - Work with finite sample
- Which Model to choose?
 - Uncertainty in Objective or Constraints
 - What means "feasible"?
 - Can decision be made in stages?

└─ Modeling

Difficulties in SP - Resolution

Structural Problem

- Structural Problem
 - non-convexity

- Structural Problem
 - non-convexity
 - non-continuity

- Structural Problem
 - non-convexity
 - non-continuity
 - non-analytic expressions

- Structural Problem
 - non-convexity
 - non-continuity
 - non-analytic expressions
- Problem Size

- Structural Problem
 - non-convexity
 - non-continuity
 - non-analytic expressions
- Problem Size

Stefanie Kosuch

Deterministic or Random Method?

Modeling

Greatest Challenges in Stochastic Programming

Greatest Challenges in Stochastic Programming

Modeling Real World problems with uncertainties as SP problems

Stefanie Kosuch

Greatest Challenges in Stochastic Programming

- Modeling Real World problems with uncertainties as SP problems
- Solve "realistic" sized problems in reasonable time

Greatest Challenges in Stochastic Programming

- Modeling Real World problems with uncertainties as SP problems
- Solve "realistic" sized problems in reasonable time
- Find more adapted solution techniques (for general distributions)

Stefanie Kosuch

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- Introduction to Stochastic Programming2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 - The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions
- 6 Complexity

I: Approximate Distribution

Observations of random parameters

I: Approximate Distribution

- 1 Observations of random parameters
- 2 "Extract" representative sample

I: Approximate Distribution

- 1 Observations of random parameters
- 2 "Extract" representative sample
- 3 Approximate distribution:

I: Approximate Distribution

- 1 Observations of random parameters
- "Extract" representative sample
- 3 Approximate distribution:
 - a) Either: Work with discrete sample

I: Approximate Distribution

- 1 Observations of random parameters
- 2 "Extract" representative sample
- 3 Approximate distribution:
 - a) Either: Work with discrete sample
 - b) Or: Approximate by continuous distribution

Stefanie Kosuch

I: Approximate Distribution

- 1 Observations of random parameters
- 2 "Extract" representative sample
- 3 Approximate distribution:
 - a) Either: Work with discrete sample
 - b) Or: Approximate by continuous distribution

Stefanie Kosuch

I: Approximate Distribution

- 1 Observations of random parameters
- "Extract" representative sample
- 3 Approximate distribution:
 - a) Either: Work with discrete sample
 - b) Or: Approximate by continuous distribution

Main Problem

Inexact Approximation

II: Work with sampling

Keep distribution unknown in model

II: Work with sampling

- 1 Keep distribution unknown in model
- 2 "Online" samples in solution process

II: Work with sampling

- 1 Keep distribution unknown in model
- "Online" samples in solution process
- $3 \rightarrow Black Box Model$

II: Work with sampling

- 1 Keep distribution unknown in model
- "Online" samples in solution process
- $3 \rightarrow Black Box Model$

II: Work with sampling

- 1 Keep distribution unknown in model
- "Online" samples in solution process
- $\mathbf{3} \to \mathsf{Black} \; \mathsf{Box} \; \mathsf{Model}$

Main Problem

Evaluation of objective/constraint function difficult

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- Introduction to Stochastic Programming2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions
- 6 Complexity

Notations ersity

■ $\mathbb{P}{A}$: Probability that event A arises

ersity

- $\mathbb{P}{A}$: Probability that event A arises
- lacksquare $\mu:=\mathbb{E}[X]$: expectation of random variable X

ersity

- $\mathbb{P}{A}$: Probability that event A arises
- ullet $\mu:=\mathbb{E}[X]$: expectation of random variable X
- $\sigma := \sqrt{V(X)}$: standard deviation of random variable X

- $\mathbb{P}{A}$: Probability that event A arises
- ullet $\mu:=\mathbb{E}[X]$: expectation of random variable X
- $\sigma := \sqrt{V(X)}$: standard deviation of random variable X
- φ_X(x):
 Density function of continuous random variable X
 Probability mass function of discrete random variable X

- $\mathbb{P}{A}$: Probability that event A arises
- ullet $\mu:=\mathbb{E}[X]$: expectation of random variable X
- $\sigma := \sqrt{V(X)}$: standard deviation of random variable X
- φ_X(x):
 Density function of continuous random variable X
 Probability mass function of discrete random variable X
- $\Phi_X(c)$: Cumulative distribution function of random variable X

arsity

- $\mathbb{P}{A}$: Probability that event A arises
- ullet $\mu:=\mathbb{E}[X]$: expectation of random variable X
- $\sigma := \sqrt{V(X)}$: standard deviation of random variable X
- φ_X(x):
 Density function of continuous random variable X
 Probability mass function of discrete random variable X
- $\Phi_X(c)$ = $\mathbb{P}\{X \leq c\}$: Cumulative distribution function of random variable X

arsity

 $\chi \in \mathbb{R}^n$: Random vector

- $\chi \in \mathbb{R}^n$: Random vector

- $\chi \in \mathbb{R}^n$: Random vector
- $\boldsymbol{\chi}_i$: Random variable

- $\chi \in \mathbb{R}^n$: Random vector
- $\chi = (\chi_1, \ldots, \chi_n)$
- χ_i : Random variable
- Dependent or independent?

- $\chi \in \mathbb{R}^n$: Random vector
- $\chi = (\chi_1, \ldots, \chi_n)$
- $\boldsymbol{\chi}_i$: Random variable
- Dependent or independent?
- $A(\chi) \in \mathbb{R}^{n_1 \times m_1}$: Matrix with random entries

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- 3 Introduction to Stochastic Programming
 - 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 - The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions
- 6 Complexity

Continuous distributions

Important facts on continuous distributions

Cumulative distribution continuous

Important facts on continuous distributions

- Cumulative distribution continuous
- Density function continuous on certain interval(s)

Important facts on continuous distributions

- Cumulative distribution continuous
- Density function continuous on certain interval(s)

$$\forall a \in (-\infty, \infty) : \mathbb{P}\{X = a\} = 0$$

Important facts on continuous distributions

- Cumulative distribution continuous
- Density function continuous on certain interval(s)

$$\forall a \in (-\infty, \infty) : \mathbb{P}\{X = a\} = 0$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} y \cdot \varphi_X(y) dy$$

Stochastic Optimization

Important distributions

Continuous distributions

Normal distribution		

Normal distribution

Density function:

Normal distribution

Density function:

$$\varphi_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Density function:

$$\varphi_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Continuous distributions

Normal distribution

Density function:

$$\varphi_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\Phi_X(c) = ?$$

Continuous distributions

Normal distribution

Density function:

$$\varphi_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\Phi_X(c) = ?$$

Density function:

$$\varphi_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Cumulative distribution function:

$$\Phi_X(c) = ?$$

Examples

■ "Natural" measures (body height, shoe size, tree heights...)

Density function:

$$\varphi_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Cumulative distribution function:

$$\Phi_X(c) = ?$$

Examples

- "Natural" measures (body height, shoe size, tree heights...)
- Economic phenomena (e.g. income distribution)

Density function:

$$\varphi_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Cumulative distribution function:

$$\Phi_X(c) = ?$$

Examples

- "Natural" measures (body height, shoe size, tree heights...)
- Economic phenomena (e.g. income distribution)
- Data Measurements

Stochastic Optimization

Important distributions

Continuous distributions

Uniform distribution

Continuous distributions

Uniform distribution

Density function:

Continuous distributions

Uniform distribution

Density function:

$$\varphi_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

Density function:

$$\varphi_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

Density function:

$$\varphi_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

$$\Phi_X(c) = \begin{cases} 0 & \text{if } c < a \\ \frac{c-a}{b-a} & \text{if } c \in [a,b] \\ 1 & \text{if } c > b \end{cases}$$

Density function:

$$\varphi_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

Cumulative distribution function:

$$\Phi_X(c) = \begin{cases} 0 & \text{if } c < a \\ \frac{c-a}{b-a} & \text{if } c \in [a,b] \\ 1 & \text{if } c > b \end{cases}$$

Examples

■ Waiting time for bus

Density function:

$$\varphi_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

Cumulative distribution function:

$$\Phi_X(c) = \begin{cases} 0 & \text{if } c < a \\ \frac{c-a}{b-a} & \text{if } c \in [a,b] \\ 1 & \text{if } c > b \end{cases}$$

Examples

- Waiting time for bus
- Leak between two access points to pipeline (appr.)

Stochastic Optimization

Important distributions

Continuous distributions

Exponential distribution

Density function:

Density function:

$$\varphi_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Density function:

$$\varphi_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Continuous distributions

Exponential distribution

Density function:

$$\varphi_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

$$\Phi_X(c) = \left\{ egin{aligned} 1 - e^{-\lambda c} & ext{if } c \geq 0 \\ 0 & ext{otherwise} \end{aligned}
ight.$$

Density function:

$$\varphi_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Cumulative distribution function:

$$\Phi_X(c) = \left\{ egin{aligned} 1 - e^{-\lambda c} & ext{if } c \geq 0 \ 0 & ext{otherwise} \end{aligned}
ight.$$

Examples

■ "Lifetime" (light bulbs, batteries, electronic components...)

Density function:

$$\varphi_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Cumulative distribution function:

$$\Phi_X(c) = \begin{cases} 1 - e^{-\lambda c} & \text{if } c \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Examples

- "Lifetime" (light bulbs, batteries, electronic components...)
- Time till next earthquake

Density function:

$$\varphi_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Cumulative distribution function:

$$\Phi_X(c) = \left\{ egin{aligned} 1 - e^{-\lambda c} & ext{if } c \geq 0 \\ 0 & ext{otherwise} \end{aligned}
ight.$$

Examples

- "Lifetime" (light bulbs, batteries, electronic components...)
- Time till next earthquake
- Amount of change in your pocket

Density function:

$$\varphi_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Cumulative distribution function:

$$\Phi_X(c) = \begin{cases} 1 - e^{-\lambda c} & \text{if } c \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Examples

- "Lifetime" (light bulbs, batteries, electronic components...)
- Time till next earthquake
- Amount of change in your pocket
- Phone calls (length, time between two calls...)

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- 3 Introduction to Stochastic Programming
 - 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 - The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions
- 6 Complexity

Stochastic Optimization

Important distributions

Discrete distributions

<u>└─Dis</u>crete distributions

Some facts on discrete distributions

■ Generally concern counts ("Number of...")

- Generally concern counts ("Number of...")
- \exists countable set S = S(X) such that

- Generally concern counts ("Number of...")
- \exists countable set S = S(X) such that

- Generally concern counts ("Number of...")
- \blacksquare \exists countable set S = S(X) such that

$$\mathbb{P}\{X=a\}>0 \Leftrightarrow a\in S$$

- Generally concern counts ("Number of...")
- \exists countable set S = S(X) such that

Discrete distributions

- Generally concern counts ("Number of...")
- \exists countable set S = S(X) such that

$$\mathbb{P}\{X=a\}>0 \Leftrightarrow a\in S$$

$$\blacksquare \mathbb{E}[X] = \sum_{y \in S} y \ \mathbb{P}\{X = y\}$$

- Generally concern counts ("Number of...")
- \blacksquare \exists countable set S = S(X) such that

$$\mathbb{P}\{X=a\}>0 \Leftrightarrow a\in S$$

$$\blacksquare \mathbb{E}[X] = \sum_{y \in S} y \ \mathbb{P}\{X = y\}$$

 Cumulative distribution function increases only by jump discontinuities

Stefanie Kosuch

Discrete finite distribution

Probability mass function:

Discrete distributions

Discrete finite distribution

Probability mass function:

$$\exists$$
 S with $|S| < \infty$ such that

Discrete finite distribution

Probability mass function:

 $\exists \ S \ \text{with} \ |S| < \infty \ \text{such that}$

$$\varphi_X(x) > 0 \Leftrightarrow x \in S$$

Discrete finite distribution

Probability mass function:

 \exists S with $|S| < \infty$ such that

$$\mathbb{P}\{X=x\}>0\Leftrightarrow x\in S$$

Probability mass function:

 $\exists \ S \ \text{with} \ |S| < \infty \ \text{such that}$

$$\mathbb{P}\{X=x\}>0\Leftrightarrow x\in S$$

Cumulative distribution function:

Probability mass function:

 $\exists S \text{ with } |S| < \infty \text{ such that }$

$$\mathbb{P}\{X=x\}>0\Leftrightarrow x\in S$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{\substack{x \in S \\ x \le c}} \mathbb{P}\{X = x\}$$

Probability mass function:

 $\exists S \text{ with } |S| < \infty \text{ such that }$

$$\mathbb{P}\{X=x\}>0\Leftrightarrow x\in S$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{\substack{x \in S \\ x < c}} \mathbb{P}\{X = x\}$$

Notations

Discrete distributions

Discrete finite distribution

Probability mass function:

 $\exists S \text{ with } |S| < \infty \text{ such that }$

$$\mathbb{P}\{X=x\}>0\Leftrightarrow x\in S$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{\substack{x \in S \\ x \le c}} \mathbb{P}\{X = x\}$$

Notations

• K = |S| possible realizations or "scenarios"

Probability mass function:

 $\exists S \text{ with } |S| < \infty \text{ such that }$

$$\mathbb{P}\{X=x\}>0\Leftrightarrow x\in S$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{\substack{x \in S \\ x < c}} \mathbb{P}\{X = x\}$$

Notations

- K = |S| possible realizations or "scenarios"
- X^1, \dots, X^K

Probability mass function:

 $\exists S \text{ with } |S| < \infty \text{ such that }$

$$\mathbb{P}\{X=x\}>0\Leftrightarrow x\in\mathcal{S}$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{\substack{x \in S \\ x \le c}} \mathbb{P}\{X = x\}$$

Examples

Probability mass function:

 $\exists S \text{ with } |S| < \infty \text{ such that }$

$$\mathbb{P}\{X=x\} > 0 \Leftrightarrow x \in S$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{\substack{x \in S \\ x \le c}} \mathbb{P}\{X = x\}$$

Examples

■ Discrete random variables with bounds (e.g. utilized capacity)

Probability mass function:

 $\exists S \text{ with } |S| < \infty \text{ such that }$

$$\mathbb{P}\{X=x\}>0\Leftrightarrow x\in\mathcal{S}$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{\substack{x \in S \\ x \le c}} \mathbb{P}\{X = x\}$$

Examples

- Discrete random variables with bounds (e.g. utilized capacity)
- Approximation of (continuous) distribution by finite sample

Discrete uniform distribution

Discrete distributions

Discrete uniform distribution

☐ Discrete distributions

Discrete uniform distribution

$$\exists$$
 S with $|S| < \infty$ such that

Discrete uniform distribution

Probability mass function:

 $\exists S \text{ with } |S| < \infty \text{ such that }$

$$\varphi_X(x) = 1/|S| \Leftrightarrow x \in S$$

Discrete uniform distribution

Probability mass function:

 $\exists S \text{ with } |S| < \infty \text{ such that }$

$$\mathbb{P}\{X=x\}=1/|S| \Leftrightarrow x \in S$$

Discrete distributions

Discrete uniform distribution

Probability mass function:

 $\exists S \text{ with } |S| < \infty \text{ such that }$

$$\mathbb{P}\{X=x\}=1/|S| \Leftrightarrow x \in S$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{\substack{x \in S \\ y \neq c}} 1/|S|$$

☐ Discrete distributions

Discrete uniform distribution

Probability mass function:

 $\exists \ S \ \text{with} \ |S| < \infty \ \text{such that}$

$$\mathbb{P}\{X=x\}=1/|S| \Leftrightarrow x \in S$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{\substack{x \in S \\ x \le c}} 1/|S|$$

Examples

Discrete uniform distribution

Probability mass function:

 $\exists S \text{ with } |S| < \infty \text{ such that }$

$$\mathbb{P}\{X=x\}=1/|S| \Leftrightarrow x \in S$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{\substack{x \in S \\ y \le c}} 1/|S|$$

Examples

■ Throwing a die

Discrete uniform distribution

Probability mass function:

 $\exists S \text{ with } |S| < \infty \text{ such that }$

$$\mathbb{P}\{X = x\} = 1/|S| \Leftrightarrow x \in S$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{\substack{x \in S \\ x \le c}} 1/|S|$$

Examples

- Throwing a die
- Lottery

Stochastic Optimization Important distributions

Bernoulli distribution		

- Important distributions
 - Discrete distributions

$$\varphi_X(1) = p$$
 and $\varphi_X(0) = 1 - p$

- Important distributions
 - Discrete distributions

$$\mathbb{P}{X = 1} = p \text{ and } \mathbb{P}{X = 0} = 1 - p$$

Probability mass function:

$$\mathbb{P}{X = 1} = p \text{ and } \mathbb{P}{X = 0} = 1 - p$$

Cumulative distribution function:

Discrete distributions

Bernoulli distribution

Probability mass function:

$$\mathbb{P}{X = 1} = p \text{ and } \mathbb{P}{X = 0} = 1 - p$$

Cumulative distribution function:

$$\Phi_X(c) = \begin{cases} 0 & \text{if } c \in (-\infty, 0) \\ 1 - p & \text{if } c \in [0, 1) \\ 1 & \text{if } c \in [1, \infty) \end{cases}$$

Discrete distributions

Bernoulli distribution

Probability mass function:

$$\mathbb{P}\{X=1\}=p \text{ and } \mathbb{P}\{X=0\}=1-p$$

Cumulative distribution function:

$$\Phi_X(c) = \begin{cases} 0 & \text{if } c \in (-\infty, 0) \\ 1 - p & \text{if } c \in [0, 1) \\ 1 & \text{if } c \in [1, \infty) \end{cases}$$

Examples

■ Success/Failure

Probability mass function:

$$\mathbb{P}\{X=1\}=p \text{ and } \mathbb{P}\{X=0\}=1-p$$

Cumulative distribution function:

$$\Phi_X(c) = \begin{cases} 0 & \text{if } c \in (-\infty, 0) \\ 1 - p & \text{if } c \in [0, 1) \\ 1 & \text{if } c \in [1, \infty) \end{cases}$$

Examples

- Success/Failure
- "Yes/No" Events

Stochastic Optimization

Important distributions

Discrete distributions

Poisson distribution

Discrete distributions

Poisson distribution

Discrete distributions

Poisson distribution

Probability mass function:

$$\varphi_X(k) = \frac{\lambda^k e^{-\lambda}}{k!} \quad (k \in \mathbb{Z})$$

Cumulative distribution function:

Probability mass function:

$$\varphi_X(k) = \frac{\lambda^k e^{-\lambda}}{k!} \quad (k \in \mathbb{Z})$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{i=0}^c \frac{\lambda^i e^{-\lambda}}{i!}$$

Probability mass function:

$$\varphi_X(k) = \frac{\lambda^k e^{-\lambda}}{k!} \quad (k \in \mathbb{Z})$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{i=0}^c \frac{\lambda^i e^{-\lambda}}{i!}$$

Appropriate model for counts

■ # phone calls

Probability mass function:

$$\varphi_X(k) = \frac{\lambda^k e^{-\lambda}}{k!} \quad (k \in \mathbb{Z})$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{i=0}^c \frac{\lambda^i e^{-\lambda}}{i!}$$

Appropriate model for counts

- # phone calls
- # type errors on a page

Probability mass function:

$$\varphi_X(k) = \frac{\lambda^k e^{-\lambda}}{k!} \quad (k \in \mathbb{Z})$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{i=0}^c \frac{\lambda^i e^{-\lambda}}{i!}$$

Appropriate model for counts

- # phone calls
- # type errors on a page
- # white blood cells found in a cubic centimeter of blood

Probability mass function:

$$\varphi_X(k) = \frac{\lambda^k e^{-\lambda}}{k!} \quad (k \in \mathbb{Z})$$

Cumulative distribution function:

$$\Phi_X(c) = \sum_{i=0}^c \frac{\lambda^i e^{-\lambda}}{i!}$$

Appropriate model for counts

- # phone calls
- # type errors on a page
- # white blood cells found in a cubic centimeter of blood
- Large $\lambda \rightarrow$ normal distribution

Outline

- 1 Administrative Details
- 2 Course Aims and Structure
- 3 Introduction to Stochastic Programming
 - 2 examples of SP problems
- 4 Modeling Stochastic Optimization Problems
 - The "underlying" distributions
- 5 Important distributions
 - Continuous distributions
 - Discrete distributions
- 6 Complexity

Decision Problems

Decision Problems

- P: Polynomial time solvable

- P: Polynomial time solvable
- NP: Verification of "yes"-instance in polynomial time

- P: Polynomial time solvable
- **NP:** Verification of "yes"-instance in polynomial time
- **NP-hard:** "at least as hard as the hardest problems in *NP*"

- **P:** Polynomial time solvable
- **NP:** Verification of "yes"-instance in polynomial time
- **NP-hard:** "at least as hard as the hardest problems in *NP*"
- **NP-complete:** *NP*-hard problems in *NP*

- **P:** Polynomial time solvable
- **NP:** Verification of "yes"-instance in polynomial time
- **NP-hard:** "at least as hard as the hardest problems in *NP*"
- **NP-complete:** *NP*-hard problems in *NP*

- **P:** Polynomial time solvable
- **NP:** Verification of "yes"-instance in polynomial time
- **NP-hard:** "at least as hard as the hardest problems in *NP*"
- **NP-complete:** *NP*-hard problems in *NP*

 $P \subset NP$

- P: Polynomial time solvable
- NP: Verification of "yes"-instance in polynomial time
- **NP-hard:** "at least as hard as the hardest problems in *NP*"
- **NP-complete:** *NP*-hard problems in *NP*

7

 $P \neq NP$

└ Complexity

Counting Problems

- $\sharp P$: Counting problems associated with problems in NP

- $\sharp P$: Counting problems associated with problems in NP
- ♯*P*-complete:

In $\sharp P$ and every problem in $\sharp P$ can be reduced to it

- $\sharp P$: Counting problems associated with problems in NP
- ♯*P*-complete:

In $\sharp P$ and every problem in $\sharp P$ can be reduced to it

- #P: Counting problems associated with problems in NP
- *‡P*-complete: In $\sharp P$ and every problem in $\sharp P$ can be reduced to it

 $\sharp P$ -complete problems

Stefanie Kosuch

- $\sharp P$: Counting problems associated with problems in NP
- #P-complete:
 In #P and every problem in #P can be reduced to it

$\sharp P$ -complete problems

■ "How many graph colorings using k colors are there for a particular graph G?"

- #P: Counting problems associated with problems in NP
- *‡P*-complete: In $\sharp P$ and every problem in $\sharp P$ can be reduced to it

$\sharp P$ -complete problems

- "How many graph colorings using k colors are there for a particular graph G?"
- "How many perfect matchings are there for a given bipartite graph?"

- #P: Counting problems associated with problems in NP
- *‡P*-complete: In $\sharp P$ and every problem in $\sharp P$ can be reduced to it

$\sharp P$ -complete problems

- "How many graph colorings using k colors are there for a particular graph G?"
- "How many perfect matchings are there for a given bipartite graph?"

- $\sharp P$: Counting problems associated with problems in NP
- #P-complete:
 In #P and every problem in #P can be reduced to it

$\sharp P$ -complete problems

- "How many graph colorings using k colors are there for a particular graph G?"
- "How many perfect matchings are there for a given bipartite graph?"

 $\sharp P$ -complete problem solvable in pol. time $\Rightarrow P = NP$

Linköping University

Next lecture

A little bit of history.

Next lecture

- A little bit of history.
- (Some more small examples.)

Next lecture

- A little bit of history.
- (Some more small examples.)
- Uncertainty in the objective function.

QUESTIONS?

