
What is the interest of Stochastic Combinatorial Optimization?

Combinatorial ”real world problems” often subject to uncertainties

Not all parameters known when decision has to be made:
market fluctuations, available capacity...

Own decision depends on future decision of other parties:
competition, clients, government...

Setting of problem might change:
weather, location...
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Introduction to Stochastic Combinatorial Optimization

• Random parameters easy to implement → Random variables
• ”Code” other uncertainties in parameters



Definition

Stochastic Combinatorial Optimization concerns the study and
resolution of Combinatorial Optimization problems that involve
uncertainties.
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Introduction to Stochastic Combinatorial Optimization

Note that there is a slight difference between the usage of the term
”Stochastic Optimisation” and ”Stochastic Programming”.
Stochastic Programming designs the modeling and study of
optimization problems that involve uncertainties.
Stochastic Optimization addresses the study of optimization algorithms
that are either randomized or created to solve stochastic programming
problems.

However, these definitions are not always properly used and of course

both fields intersect in a lot of aspects.



Deterministic Knapsack problem
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Introduction to Stochastic Combinatorial Optimization

2 examples of SCO problems

Deterministic Knapsack problem

Deterministic knapsack problem: The problem consists in choosing a

subset out of a given set of items such that the total weight (or size) of

the subset does not exceed a given limit (the capacity of the knapsack)

and the total benefit/reward of the subset is maximized.



Stochastic Knapsack problem

$4-8 12-15 kg

$2-6 2-3 kg

$1-2 1-4 kg

$2-5 1-3 kg

$10-15 4-7 kg

?
15 kg
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Introduction to Stochastic Combinatorial Optimization

2 examples of SCO problems

Stochastic Knapsack problem

What happens if item rewards or weights are random? What is a feasible

solution? For example, is it allowed to add all items apart from the green

one although they might violate the capacity constraint? And what

happens if they do?



Possible ways to handle capacity constraint

knapsack constraint violated ⇒ penalty

probability of capacity violation restricted

decision can be corrected later (add. costs/reduced rewards)
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Introduction to Stochastic Combinatorial Optimization

2 examples of SCO problems

In the first two examples violation was acceptable. But what if a
violation is not allowed, in any case? Well, we could force our solution to
always respect the knapsack constraint. In this case at most 3 items
could be chosen, at a much lower reward.

Or we could see, if a correction might be possible later (3rd example), i.e.

we chose the 4 items (not the green one) and then, if their total weight

exceeds the capacity, we reject one item.



Deterministic Graph Coloring
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Introduction to Stochastic Combinatorial Optimization

2 examples of SCO problems

Deterministic Graph Coloring

Deterministic Graph Coloring: Color a graph such that no two adjacent
vertices are colored in the same color and such that a minimum number
of colors is used.
In this example: Use of 4 colors is optimal as graph contains complete
graph with 4 vertices.

Application: Assignment problems. The vertices could represent

university courses, two courses are linked iff there is at least one student

that wants to attend both courses. Coloring the obtained modelgraph

with the minimum number of colors tells you how many time slots you

need to schedule these courses.



Stochastic Graph Coloring
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Introduction to Stochastic Combinatorial Optimization

2 examples of SCO problems

Stochastic Graph Coloring

What if, at the moment where you have to create the schedule, you do

not know the decision of the students yet? And what if there are two

courses with a very low probability that a student wants to take both of

them? And what if you are running out of time slots? You might

consider coloring both vertices with the same color and reduce the

number of used colors:



Changing settings

set of edges random

set of vertices random

Changing parameters

allowed number of colors random

”cost” of colors random
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Introduction to Stochastic Combinatorial Optimization

2 examples of SCO problems

Vertex set random: You do not know which courses will take place in the
end. For example a course might be cancelled due to lack of students.

Number of allowed colors random: The university might assign you a

restricted number of time slots, that might change in the future due to

changings in other programs.



Deterministic CO Model → Stochastic CO Model

max
x∈{0,1}n

f (x)

s.t. g(x) ≤ 0 →

min
x∈{0,1}n

f (x , χ)

s.t. g(x , χ) ≤ 0

χ ∈ Ω ⊆ Rs : vector with random entries
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Introduction to Stochastic Combinatorial Optimization

Modeling Stochastic Combinatorial Optimization Problems

If you have an SCO optimization with random parameters and you fix
these parameters, you get a deterministic CO problem.

The other way round, if you have a deterministic CO problem and you

assume some of the parameters to be ranom your problem gets

stochastic. Question: Where does the randomness occurs? Only in the

objective, only in the constraint, in both?



Minimize an expectation

min
x∈{0,1}n

E [f (x , χ)]

s.t. g(x) ≤ 0

Advantages:

Good result ”on average”

Objective function can often be reformulated deterministically

Disadvantages:

We might encounter very ”bad cases”
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Introduction to Stochastic Combinatorial Optimization

Modeling Stochastic Combinatorial Optimization Problems

”Where” does the randomness occur?

• E[X ]: expectation of random variable X



Minimize variance

min
x∈{0,1}n

Var [f (x , χ)]

s.t. g(x) ≤ 0

Advantages:

Outcome more concentrated around mean

Possibility to reduce risk

Disadvantages:

Makes not much sense without benchmark for expected costs
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Introduction to Stochastic Combinatorial Optimization

Modeling Stochastic Combinatorial Optimization Problems

”Where” does the randomness occur?

• Var [X ]: variance of random variable X



Minimize variance

min
x∈{0,1}n

λVar [f (x , χ)] + E [f (x , χ)]

s.t. g(x) ≤ 0

Advantages:

Outcome more concentrated around mean

Possibility to reduce risk
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Modeling Stochastic Combinatorial Optimization Problems

”Where” does the randomness occur?

Role of λ: Control relative importance of expectation and variance in

your model.



Robust optimization

min
x∈{0,1}n

max
χ∈Ω

f (x , χ)

s.t. g(x) ≤ 0

Advantages:

Worst case not too bad: Solution is robust

Disadvantages:

f (x , ·) needs to be bounded from above

Worst case might be very improbable

Average might be high2
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Modeling Stochastic Combinatorial Optimization Problems

”Where” does the randomness occur?

• Robust Optmization generally not considered as being part of
Stochastic Optmization, e.g. as the solution algorithms and
approaches are generally quite different.

• However, I think the presented worst case model can be of good use
in many cases, at least as a subproblem.

• Most common assumed distribution: χi (uniformly) distributed over
certain interval



Worst case model

min
x∈{0,1}n

f (x)

s.t. g(x , χ) ≤ 0 ∀χ ∈ Ω

Advantages:

Absolutely robust solution

Disadvantages:

Problem often infeasible or has only trivial solutions

Solution at high costs

Constraint forced to be satisfied in even very improbable cases2
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Modeling Stochastic Combinatorial Optimization Problems

”Where” does the randomness occur?

• consider a knapsack problem with no upper bound on random item
weights: only feasible solution would be to add no item at all.

• Worst case problem considered as robust optmization problem.



Chance-Constrained model

min
x∈{0,1}n

f (x)

s.t. P{∃i : gi (x , χ) > 0} ≤ α

Advantages:

Very improbable cases can be ignored

Cost can be reduced

Disadvantages:

No restriction of ”magnitude” of allowed violation

What happens if constraint is violated?2
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Modeling Stochastic Combinatorial Optimization Problems

”Where” does the randomness occur?

P{A}: probability that event A occurs

P{∃i : gi (x , χ) > 0} = 1− P{gi (x , χ) ≤ 0 ∀i}

P{∃i : gi (x , χ) > 0} ≤ α⇔ P{gi (x , χ) ≤ 0 ∀i} ≥ 1− α



Simple-Recourse model

min
x∈{0,1}n1

f (x) +
m∑
i=1

di · E
[
[gi (x , χ)]+

]
Advantages:

Costs in case of violation taken into account

”Magnitude” of violation can be controlled

Disadvantages:

Probability of violation not restricted
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Modeling Stochastic Combinatorial Optimization Problems

”Where” does the randomness occur?

• di > 0 penalty per ”unit of expected amount of violation”
• [x ]+ = max(0, x)
• [gi (x , χ)]+ = 0 iff constraint i satisfied, [gi (x , χ)]+ gives ”amount”

of violation otherwise
• E [[gi (x , χ)]+]: expected amount of violation
• Combine Simple Recourse and Chance constraint in order to control

both the magnitude and probability of violation



Two-Stage model

min
x∈{0,1}n1

f (x) + E [Q(x , χ)]

s.t. Q(x , χ) = min
y∈{0,1}n2

f (y)

s.t. g(x , y , χ) ≤ 0

Advantages:

Violation of constraint not permitted

Corrections in case of violation taken into account

Disadvantages:

Problem extremely hard to solve:

→ Non-convex, non-continuous objective function
→ No closed-form expression of objective function
→ Second-stage problem NP-hard
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Modeling Stochastic Combinatorial Optimization Problems

”Where” does the randomness occur?

More general: First stage can of course have additional constraints.



Deterministic Knapsack Problem

max
x∈{0,1}n

n∑
i=1

rixi

s.t.
n∑

i=1

wixi ≤ c

Simple Recourse Knapsack Problem

max
x∈{0,1}n

n∑
i=1

rixi − d · E

[
[

n∑
i=1

χixi − c]+

]

2
0
1
1
-0
1
-2
8

Introduction to Stochastic Combinatorial Optimization

Modeling Stochastic Combinatorial Optimization Problems

”Where” does the randomness occur?

• [
∑n

i=1 χixi − c]+ = overweight
• E

[
[
∑n

i=1 χixi − c]+
]
: expected overweight

• d > 0 penalty per overweight unit



Two-Stage Knapsack Problem

(TSKP) max
x∈{0,1}n

n∑
i=1

rixi + E[Q(x , χ)]

s.t. Q(x , χ) = max
y+,y−∈{0,1}n

n∑
i=1

r iy
+
i −

n∑
i=1

diy
−
i ,

s.t. y+
j ≤ 1− xj , j = 1, . . . , n,

y−j ≤ xj , j = 1, . . . , n,
n∑

i=1

(xi + y+
i − y−i )χi ≤ c .
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Modeling Stochastic Combinatorial Optimization Problems

”Where” does the randomness occur?

• Items can be added and/or removed in the second stage
• In the end remaining items need to respect knapsack capacity
• x : decision vector of 1st stage
• y+, y−: decision vectors of 2nd stage (recourse action)
• r i < ri , di > ri
• If r i ≥ ri : Add item i in 2. stage
• If di ≤ ri : Add item in 1. stage (removal is without cost or one even

gains)



Static Stochastic Optimization problems

Random parameters revealed after decision has been made.

For decision maker parameters are revealed ”once for all”.

No corrective decision can be made.

Minimize expectation and/or variance

Robust/Worst Case Optimization

Chance-Constrained Optimization

Simple Recourse Model
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Modeling Stochastic Combinatorial Optimization Problems

When are the actual parameters revealed?

• Simple Recourse model: is paying a penalty a corrective decision?
No.



Two-Stage Optimization problems

For decision maker parameters are revealed ”once for all”.

Random parameters revealed after first-stage decision has
been made.

Corrective decision can be made once the parameters are
known.

Two-Stage Model

Simple Recourse Model
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Modeling Stochastic Combinatorial Optimization Problems

When are the actual parameters revealed?

• Simple Recourse model: can be reformulated as Two-Stage decision
model

• Continuous second stage decision variables yi serve to ”correct
constraints”

• One variable for each constraint
• Second stage constraints: gi (x , χ) ≤ 0 + yi
• Optimal second-stage decision: yi = [gi (x , χ)]+



Multi-Stage Optimization problems

Parameters are revealed in several stages.

Corrective decision can be made in each stage.

Which parameters are revealed in which stage generally
defined.

Decisions do only depend on already revealed parameters.

Two-Stage Model

Multi-Stage Model
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Modeling Stochastic Combinatorial Optimization Problems

When are the actual parameters revealed?

• Attention: In deterministic multi-period decision problems: future
parameters all known
decisions based on current parameters and future changings
⇒ multi-period decision problems problems are deterministic
problems



Structural Difficulties

Non-convexity

Non-continuous objective functions

No closed-form expression for objective function

Two-Stage model

min
x∈{0,1}n1

f (x) + E [Q(x , χ)]

s.t. Q(x , χ) = min
y∈{0,1}n2

f (y)

s.t. g(x , y , χ) ≤ 02
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Introduction to Stochastic Combinatorial Optimization

Solving Stochastic Combinatorial Optimization problems

Problems/Difficulties

The Two-Stage model is an extrem example for the structural difficulties

as generally all of them are present (at least in case of second stage

integer or binary decision variables)



Two-Stage Knapsack Problem

(TSKP) max
x∈{0,1}n

n∑
i=1

rixi + E[Q(x , χ)]

s.t. Q(x , χ) = max
y+,y−∈{0,1}n

n∑
i=1

r iy
+
i −

n∑
i=1

diy
−
i ,

s.t. y+
j ≤ 1− xj , j = 1, . . . , n,

y−j ≤ xj , j = 1, . . . , n,
n∑

i=1

(xi + y+
i − y−i )χi ≤ c .
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Solving Stochastic Combinatorial Optimization problems

Problems/Difficulties

An example for NP-hardness of the second-stage problem is the

Two-Stage Knapsack problem, as the second stage problem can be

shown to be a ”simple” knapsack problem.



Idea

→ Reformulate problem as a deterministic optimization problem

→ Use already existing solvers to solve obtained problem

→ Adapt existing algorithms to the special structure of the
obtained problem

Problem

Generally only possible under assumption of special distributions!
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Solving Stochastic Combinatorial Optimization problems

Deterministic Reformulation

Currently the most practiced approach to solve stochastic compbinatorial

optimization problem. Unfortunately, as I think that if we tried to be a

bit more innovative concerning the creation of special algorithms for

SCO, we might advance faster.



Ex. 1: Chance-constrained Knapsack prob. (normal distribution)

max
x∈{0,1}n

n∑
i=1

rixi

s.t. P{
n∑

i=1

χixi > c} ≤ α

Assume:

χ ∼ N (µ,Σ) and α < 0.5⇒

P{
n∑

i=1

χixi > c} ≤ α⇔
n∑

i=1

xiµ
i + Φ−1(1− α)‖Σ1/2x‖ ≤ c︸ ︷︷ ︸

Second Order Cone Constraint!

2
0
1
1
-0
1
-2
8

Introduction to Stochastic Combinatorial Optimization

Solving Stochastic Combinatorial Optimization problems

Deterministic Reformulation

• N (µ,Σ): joint probability distribution for random vector χ
• N (·, ·): (joint) normal distribution
• µ: vector of expectations of components of χ: µi = E[χi ]
• Σ: n × n covariance matrix
• here: Σ diagonal as weights assumed independently distributed
• Φ: cumulative distribution function of standard normal distribution
• values of Φ−1 can be looked up in tables
• α < 0.5 needed for Φ−1(1− α) to be positive
• otherwise constraint not convex
• obtained constraint can be evaluated (one can check easily for

feasibility)
• obtained problem type (Second Order Cone Problem) has been

studied a lot and special algorithms have been proposed → no more
”miracle” about how to solve the chance-constraint knapsack
problem



Ex. 2: Chance-constrained Knapsack prob. (discrete distribution)

max
x∈{0,1}n

n∑
i=1

rixi s.t. P{
n∑

i=1

χixi > c} ≤ α

Assume:
K outcomes χ1, . . . , χK with prob.’s p1, . . . , pK

Introduce:
K binary decision variables z1, . . . , zK

Replace Chance-Constraint by

n∑
i=1

χk
i xi ≤ c + Mzk ∀ k = 1, . . . ,K ,

K∑
k=1

pkzk ≤ α2
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Solving Stochastic Combinatorial Optimization problems

Deterministic Reformulation

• M ≥ maxk(
∑n

i=1 χ
k
i − c)

• zk = 1: scenario k is ”ignored”
corresponding constraint

∑n
i=1 χ

k
i xi ≤ c + Mzk always satisfied

• total probability of ”ignored” scenarios must not exceed α



Idea of the SAA

→ Sample K outcomes for random parameters

→ Assign probability 1/K to each sample

→ Replace distribution by finite sample

Advantages

Approximate information about underlying distribution X

Approximate closed-form expression for objective function X

Approximate deterministic reformulation of problem X

Smaller number of scenarios X2
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Solving Stochastic Combinatorial Optimization problems

Sample Average Approximation

Note that SAA methods are not usable for robust optimization as in
robust optimization we are concerned about the worst case. This cannot
be reflected by working only on a sample.

Concerning ”Smaller number of scenarios”: Of course sample average

approximation can also be used in case of a discrete probability

distribution with a huge number of scenarios. If an approximation of the

solution is all we need, a SAA with smaller sample might be solved

instead.



”Positive” Features

Basically same as for deterministic comb. opt.

Based on sample average approximations

Increase sample size to obtain convergence.

Additional diversification due to randomness of samples
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Solving Stochastic Combinatorial Optimization problems

Metaheuristics for SCO problems

Most metaheuristics for stochastic combinatorial optimisation work as
follows: At the beginning of each iteration you draw a sample of the
random parameters and create the corresponding SAA. The rest of the
iteration this SAA is used to create new solutions, to compare their
quality etc. In the next iteration, a new, slightly bigger sample is drawn
etc..

Once more this approach is not possible for robust optimization (see

remark in the SAA subsection).



Difficulties

Evaluation of objective function expensive

Comparison of quality of solutions difficult

SCO problems generally have a lot of local optima

Values of local optima can be close
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Solving Stochastic Combinatorial Optimization problems

Metaheuristics for SCO problems

In general you have to evaluate the objective function many times when

applying a metaheuristic, in order to compare the quality of found

solutions.
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