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Introduction to Stochastic Combinatorial Optimization

”Facts”

Combinatorial ”real world problems” often subject to uncertainties

Not all parameters known when decision has to be made:
market fluctuations, available capacity...

Own decision depends on future decision of other parties:
competition, clients, government...

Setting of problem might change:
weather, location...
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Introduction to Stochastic Combinatorial Optimization

What is the interest of Stochastic Combinatorial Optimization?

Combinatorial ”real world problems” often subject to uncertainties

Not all parameters known when decision has to be made:
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Introduction to Stochastic Combinatorial Optimization

Definition

Stochastic Combinatorial Optimization concerns the study and
resolution of Combinatorial Optimization problems that involve
uncertainties.
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Introduction to Stochastic Combinatorial Optimization

Objectives of this lecture

Give you examples of SCO-problems.

Give you an idea of how uncertainties can be modeled (most
common models).

Give you an idea of why Stochastic Optimization is hard.

Give you an idea of how SCO-problems can be solved.

Give you an idea of why metaheuristics are important tools in
SCO.
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Introduction to Stochastic Combinatorial Optimization

2 examples of SCO problems

Outline

1 2 examples of SCO problems
2 Modeling Stochastic Combinatorial Optimization Problems

”Where” does the randomness occur?
Randomness occurs in the objective function f .
Randomness occurs in the constraint function g .

When are the actual parameters revealed?
Parameters are revealed after decision has been made.
Parameters are revealed before corrective decision is made.
Parameters are revealed in several stages.

3 Solving Stochastic Combinatorial Optimization problems
Problems/Difficulties
Deterministic Reformulation
Sample Average Approximation
Metaheuristics for SCO problems

4 Conclusion
Further Reading
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Introduction to Stochastic Combinatorial Optimization

2 examples of SCO problems

Deterministic Knapsack problem
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Introduction to Stochastic Combinatorial Optimization

2 examples of SCO problems

Stochastic Knapsack problem

$4-8 12-15 kg

$2-6 2-3 kg

$1-2 1-4 kg

$2-5 1-3 kg

$10-15 4-7 kg

?
15 kg
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Introduction to Stochastic Combinatorial Optimization

2 examples of SCO problems

Possible ways to handle capacity constraint

knapsack constraint violated ⇒ penalty

probability of capacity violation restricted

decision can be corrected later (add. costs/reduced rewards)
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Introduction to Stochastic Combinatorial Optimization

2 examples of SCO problems

Stochastic Graph Coloring
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Introduction to Stochastic Combinatorial Optimization

2 examples of SCO problems

Changing settings

set of edges random

set of vertices random

Changing parameters

allowed number of colors random

”cost” of colors random
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Introduction to Stochastic Combinatorial Optimization

Modeling

Outline

1 2 examples of SCO problems
2 Modeling Stochastic Combinatorial Optimization Problems

”Where” does the randomness occur?
Randomness occurs in the objective function f .
Randomness occurs in the constraint function g .

When are the actual parameters revealed?
Parameters are revealed after decision has been made.
Parameters are revealed before corrective decision is made.
Parameters are revealed in several stages.

3 Solving Stochastic Combinatorial Optimization problems
Problems/Difficulties
Deterministic Reformulation
Sample Average Approximation
Metaheuristics for SCO problems

4 Conclusion
Further Reading
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Introduction to Stochastic Combinatorial Optimization

Modeling

Deterministic CO Model → Stochastic CO Model

max
x∈{0,1}n

f (x)

s.t. g(x) ≤ 0

→

min
x∈{0,1}n

f (x , χ)

s.t. g(x , χ) ≤ 0

χ ∈ Ω ⊆ Rs : vector with random entries
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Modeling

”Where” does the randomness occur?

Outline

1 2 examples of SCO problems
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Introduction to Stochastic Combinatorial Optimization

Modeling

”Where” does the randomness occur?

Minimize an expectation

min
x∈{0,1}n

E [f (x , χ)]

s.t. g(x) ≤ 0

Advantages:

Good result ”on average”

Objective function can often be reformulated deterministically

Disadvantages:

We might encounter very ”bad cases”
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Introduction to Stochastic Combinatorial Optimization

Modeling

”Where” does the randomness occur?

Minimize variance

min
x∈{0,1}n

λ

Var [f (x , χ)]

+ E [f (x , χ)]

s.t. g(x) ≤ 0

Advantages:

Outcome more concentrated around mean

Possibility to reduce risk

Disadvantages:

Makes not much sense without benchmark for expected costs
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Introduction to Stochastic Combinatorial Optimization

Modeling

”Where” does the randomness occur?

Robust optimization

min
x∈{0,1}n

max
χ∈Ω

f (x , χ)

s.t. g(x) ≤ 0

Advantages:

Worst case not too bad: Solution is robust

Disadvantages:

f (x , ·) needs to be bounded from above

Worst case might be very improbable

Average might be high
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Problem extremely hard to solve:

→ Non-convex, non-continuous objective function
→ No closed-form expression of objective function
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max
x∈{0,1}n

n∑
i=1

rixi

s.t.
n∑

i=1

wixi ≤ c

Simple Recourse Knapsack Problem

max
x∈{0,1}n

n∑
i=1

rixi − d · E

[
[

n∑
i=1

χixi − c]+

]
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Modeling

”Where” does the randomness occur?

Two-Stage Knapsack Problem

(TSKP) max
x∈{0,1}n

n∑
i=1

rixi

+ E[Q(x , χ)]

s.t.

Q(x , χ) = max
y+,y−∈{0,1}n

n∑
i=1

r iy
+
i −

n∑
i=1

diy
−
i ,

s.t. y+
j ≤ 1− xj , j = 1, . . . , n,

y−j ≤ xj , j = 1, . . . , n,
n∑

i=1

(xi + y+
i − y−i )χi ≤ c .
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Introduction to Stochastic Combinatorial Optimization

Modeling

When are the actual parameters revealed?

Outline

1 2 examples of SCO problems
2 Modeling Stochastic Combinatorial Optimization Problems

”Where” does the randomness occur?
Randomness occurs in the objective function f .
Randomness occurs in the constraint function g .

When are the actual parameters revealed?
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Non-continuous objective functions

No closed-form expression for objective function

Two-Stage model
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x∈{0,1}n1

f (x) + E [Q(x , χ)]

s.t. Q(x , χ) = min
y∈{0,1}n2

f (y)

s.t. g(x , y , χ) ≤ 0
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Solving Stochastic Combinatorial Optimization problems

Problems/Difficulties

Two-Stage Knapsack Problem

(TSKP) max
x∈{0,1}n

n∑
i=1

rixi + E[Q(x , χ)]

s.t. Q(x , χ) = max
y+,y−∈{0,1}n

n∑
i=1

r iy
+
i −

n∑
i=1

diy
−
i ,

s.t. y+
j ≤ 1− xj , j = 1, . . . , n,

y−j ≤ xj , j = 1, . . . , n,
n∑

i=1

(xi + y+
i − y−i )χi ≤ c .
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Deterministic Reformulation

Idea

→ Reformulate problem as a deterministic optimization problem

→ Use already existing solvers to solve obtained problem

→ Adapt existing algorithms to the special structure of the
obtained problem

Problem

Generally only possible under assumption of special distributions!
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Introduction to Stochastic Combinatorial Optimization

Solving Stochastic Combinatorial Optimization problems

Deterministic Reformulation

Ex. 1: Chance-constrained Knapsack prob. (normal distribution)

max
x∈{0,1}n

n∑
i=1

rixi

s.t. P{
n∑

i=1

χixi > c} ≤ α

Assume:

χ ∼ N (µ,Σ) and α < 0.5

⇒

P{
n∑

i=1

χixi > c} ≤ α⇔
n∑

i=1

xiµ
i + Φ−1(1− α)‖Σ1/2x‖ ≤ c
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χixi > c} ≤ α⇔
n∑

i=1

xiµ
i + Φ−1(1− α)‖Σ1/2x‖ ≤ c︸ ︷︷ ︸

Second Order Cone Constraint!
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Introduction to Stochastic Combinatorial Optimization

Solving Stochastic Combinatorial Optimization problems

Deterministic Reformulation

Ex. 2: Chance-constrained Knapsack prob. (discrete distribution)

max
x∈{0,1}n

n∑
i=1

rixi s.t. P{
n∑

i=1

χixi > c} ≤ α

Assume:
K outcomes χ1, . . . , χK with prob.’s p1, . . . , pK

Introduce:
K binary decision variables z1, . . . , zK

Replace Chance-Constraint by

n∑
i=1

χk
i xi ≤ c + Mzk ∀ k = 1, . . . ,K ,

K∑
k=1

pkzk ≤ α
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Summary

Modeling SCO problems:

→ Randomness in objective function?
→ Randomness in constraint?
→ Violation of constraint possible? Penalty?
→ Correction of decision possible? How often?

Solving SCO problems:

→ Deterministic equivalent formulation
→ Approximation of problem using sampling
→ Meta-Heuristics
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Modeling Combinatorial Real World problems with
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Solve ”realistic” sized problems in reasonable time

Find more adapted solution techniques (for general
distributions)

Find efficient (Meta)Heuristics
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